LEARNING ECOLOGIES AND MOTIVATION OF HEALTH SCIENCES FACULTY MEMBERS
DOI:
https://doi.org/10.5944/educxx1.28660Keywords:
Teaching motivation, teaching motivational profiles, Higher Education, Health Sciences, Latent Class Analysis, Learning EcologiesAgencies:
Ministerio de Economía, Industria y CompetitividadAbstract
The present work aims to deepen the study of one of the key components
that make up the Personal Dimension of the Learning Ecologies of Health Sciences faculty: teaching motivation. This is a topic scarcely explored in the field of Higher Education, despite the fact that it is an element that strongly influences the quality of the teaching-learning process. Consequently, from a person-centered perspective, the objective of this study is based on the identification of teacher motivational profiles from the combination of two motivational orientations (performance-centered motivation and mastery-oriented motivation). The methodology used was of a quantitative nature, through a survey, and with an exploratory design. The sample is made up of 416 members of the faculty of Health Sciences, belonging to 37 Spanish universities. Using the Latent Class Analysis technique, three motivational teacher profiles were identified: a) Motivated Profile; b) Moderately Motivated Profile; and C)
Unmotivated Profile. In the first we find teachers who show high levels of masteryoriented motivation and moderate levels of performance-oriented motivation. This profile is made up of more than half of the total sample. The second profile is made up of teachers with moderately high motivational levels, although unlike the first, performance-related reasons predominate. Finally, the third group includes teachers who show very low levels in both motivational orientations. These results portray a promising scenario, although potentially perfectible. The implications of this study are aimed at the design and generation of training itineraries better adjusted to the needs and characteristics of the professors to whom they are directed.
Downloads
References
Akaike, H. (1974). A new look at the statistical model identification. En E. Parzen, K. Tanabe & G. Kitagawa (Eds.), Selected Papers of Hirotugu Akaike. Springer Series in Statistics (pp. 716-723). Springer. https:// doi.org/10.1007/978-1-4612-1694-0_16
Barron, B. (2006). Interest and self-sustained learning as catalysts of development: A learning ecology perspective. Human Development, 49(4), 193–224. https://doi. org/10.1159/000094368
Bray, B. C., & Dziak, J. J. (2018). Commentary on latent class, latent profile, and latent transition analysis for characterizing individual differences in learning. Learning and Individual Differences, 66, 105-110. https://doi. org/10.1016/j.lindif.2018.06.001
Caballero, K., & Bolívar, A. (2015). El profesorado universitario como docente: hacia una identidad profesional que integre docencia e investigación. REDU. Revista de Docencia Universitaria, 13(1), 57–77. https://bit.ly/318J5m3
Castellano-Ramos, C. (2018). Los pensamientos de los profesores universitarios de ciencias de la salud. Concepciones sobre enseñanza y aprendizaje. Palobra, 18, 116-133. https:// bit.ly/3k6jSiL
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2ª Ed.). Erlbaum.
Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioural, and health sciences. Wiley. https://doi. org/10.1002/9780470567333
Daumiller, M., Stupnisky, R., & Janke, S. (2020). Motivation of higher education faculty: Theoretical approaches, empirical evidence, and future directions. International Journal of Educational Research, 99, 1–6. https:// doi.org/10.1016/j.ijer.2019.101502
Esdar, W., Gorges, J., & Wild, E. (2016). The role of basic need satisfaction for junior academics’ goal conflicts and teaching motivation. Higher Education, 72(2), 175–190. https://doi.org/10.1007/ s10734-015-9944-0
Finney, S. J., & DiStefano, C. (2006). Nonnormal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 269–314). IAP Information Age Publishing.
Gill, J. (2002). Bayesian methods: A social and behavioural sciences approach. CRC Press.
González‐Sanmamed, M., Muñoz‐Carril, P. C., & Santos‐Caamaño, F. (2019). Key components of learning ecologies: A Delphi assessment. British Journal of Educational Technology, 50(4), 1–17. https://doi.org/10.1111/bjet.12805
González-Sanmamed, M., Sangrà, A., Souto-Seijo, A., & Estévez, I. (2020). Learning ecologies in the digital era: challenges for higher education. Publicaciones, 50(1), 83–102. https://doi.org/10.30827/publicaciones.v50i1.15671
Han, J., & Yin, H. (2016). Teacher motivation: Definition, research development and implications for teachers. Cogent Education, 3(1). https:// doi.org/10.1080/2331186X.2016.1217819
Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11(1), 36–53. https://doi. org/10.1037/1082-989X.11.1.36
Jackson, N. (2013). The Concept of Learning Ecologies. En N. Jackson &
G. B. Cooper (Eds.), Lifewide Learning Education and Personal Development (pp. 1-21). https://bit.ly/2Bujbi1
Lechuga, V. M., & Lechuga, D. C. (2012). Faculty motivation and scholarly work: Self-determination and self-regulation perspectives. Journal of the Professoriate, 6(2), 59-97. https://bit.ly/3djik2o
Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in anormal mixture. Biometrika, 88(3), 767-778. https://doi. org/10.1093/biomet/88.3.767
McMullen, J., Van Hoof, J., Degrande, T., Verschaffel, L., & Van Dooren, W. (2018). Profiles of rational number knowledge in Finnish and Flemish students–A multigroup latent class analysis. Learning and Individual Differences, 66, 70-77. https://doi.org/10.1016/j. lindif.2018.02.005
Ministerio de Universidades (2019). Sistema Integrado de Información Universitaria (SIIU). Madrid.
Monroy, L., Vidal, R., & Saade, A. (2010). Análisis de clases latentes. Una técnica para detectar heterogeneidad en poblaciones. Cuaderno técnico, 2. Centro Nacional de Evaluación para la Educación Superior, A.C.
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation Study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535–569. https://doi.org/10.1080/10705510701575396
Padilla, M.A., & Thompson, J. N. (2016). Burning out faculty at doctoral research universities. Stress and Health, 32(5), 551-558. https://doi.org/10.1002/smi.2661
Rao, M. B. (2016). Motivation of teachers in higher education. Journal of Applied Research in Higher Education, 8(4), 469-
https://doi.org/10.1108/JARHE-08- 2015-0066
Richardson, P. W., Karabenick, S. A., & Watt, H. M. G. (2014). Teacher Motivation: Theory and Practice. Routledge.
Rodríguez, S., Núñez, J. C., Valle, A., Blas, R., & Rosario, P. (2009). Auto-eficacia docente, motivación del profesor y estrategias de enseñanza. Escritos de Psicología, 3(1), 1–7. https://bit. ly/2NjVBqP
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–97.
Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. https://doi. org/10.1016/j.cedpsych.2020.101860
Schunk, D. H., Pintrich, P. R., & Meece, J. L. (2008). Motivation in education: Theory, research, and applications. Pearson Education.
Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://doi. org/10.1214/aos/1176344136
Siemens, G. (2007). Connectivism: creating a learning ecology in distributed environments. En T. Hug (Ed.), Didactics of microlearning: Concepts, discourses and examples (pp. 53–68). Waxmann.
Stupnisky, R., BrckaLorenz, A., Yuhas, B., & Guay, F. (2018). Faculty members’ motivation for teaching and best practices: Testing a model based on self- determination theory across institution types. Contemporary Educational Psychology, 53, 15-26. https://doi.org/10.1016/j.cedpsych.2018.01.004
Suárez, M. J., & Martín, J. D. (2019). Influencia del perfil sociodemográfico del profesorado universitario sobre la inteligencia emocional y el burnout. Educación XX1, 22(2), 93-117. https:// doi.org/10.5944/educXX1.22514
Susacasa, S. (2013). Pedagogía médica: soporte de la formación docente específica para la enseñanza de las Ciencias de la Salud [Tesis doctoral, Universidad Nacional de la Plata]. https://bit. ly/3lYkc3B
van Lankveld, T., Schoonenboom, J., Volman, M., Croiset, G., & Beishuizen, J. (2017). Developing a teacher identity in the university context: a systematic review of the literature. Higher Education Research & Development, 36(2), 325–342. https://doi.org/10.1080/07294360.2016.1 208154
van den Berg, B.A.M., Bakker, A.B., & ten Cate, T.J. (2013). Key factors in work engagement and job motivation of teaching faculty at a university medical centre. Perspectives on Medical Education, 2, 264–275. https://doi. org/10.1007/s40037-013-0080-1
Visser-Wijnveen, G. J., Stes, A., & Van Petegem, P. (2014). Clustering teachers’ motivations for teaching. Teaching in Higher Education, 19(6), 644-656. https:// doi.org/10.1080/13562517.2014.901953
Watt, H. M. G., & Richardson, P. W. (2020). Motivation of higher education faculty: (how) it matters! International Journal of Educational Research, 100, 101533. https://doi.org/10.1016/j.ijer.2020.101533
Wosnitza, M., Helker, K., & Lohbeck, L. (2014). Teaching goals of early career university teachers in Germany. International Journal of Educational Research, 65, 90–103. ttps://doi.org/10.1016/j.ijer.2013.09.009
Zabalza, M. A., Zabalza, M. A., y de Côrte, M. I. (2018). Identidad profesional del profesorado universitario. En I. Cantón & M. Tardiff (Eds.), Identidad profesional docente (pp. 141– 157). Narcea.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.