Enfoques de aprendizaje y perspectiva temporal: persistencia en estudiantes universitarios

Autores/as

DOI:

https://doi.org/10.5944/educxx1.25552

Palabras clave:

persistencia académica, enfoques de aprendizaje, perspectiva temporal de futuro, estudiantes de primer año, educación superior

Resumen

El objetivo de este trabajo fue analizar el papel de los enfoques de aprendizaje y la perspectiva temporal de futuro en la persistencia académica de estudiantes universitarios de primer año. La muestra estuvo compuesta por 453 estudiantes de grado de primer año de la Universidad de Sevilla (España). Para medir la probabilidad de persistencia de los estudiantes, se emplearon los tres predictores significativos de la traducción al español del Cuestionario de Persistencia Universitaria (College Persistence Questionnaire, CPQ). Además, se utilizaron el cuestionario revisado de procesos de estudio de dos factores (Revised Two Factor Study Process Questionnaire, RSPQ-2F) y el inventario de perspectiva temporal (Time Perspective Inventory) para medir, respectivamente, los enfoques de aprendizaje y la perspectiva temporal de futuro. Un análisis de clúster jerárquico permitió la identificación de dos grupos de estudiantes con alta y baja probabilidad de persistencia. Se llevó a cabo un análisis de regresión logística por pasos para evaluar la contribución de los enfoques de aprendizaje y la perspectiva temporal de futuro a la explicación de la probabilidad de persistencia de los estudiantes. Nuestros resultados mostraron que ambos constructos son predictores significativos de la persistencia de los estudiantes universitarios. Los estudiantes con enfoque profundo y con una visión positiva de su futuro tienen mayor probabilidad de persistir en sus estudios que aquellos estudiantes con enfoque superficial de aprendizaje y una perspectiva de futuro negativa. Teniendo en cuenta que se ha demostrado que es posible provocar cambios en los enfoques de aprendizaje de los estudiantes, nuestros hallazgos ponen de manifiesto la relevancia de utilizar metodologías de enseñanza que faciliten la utilización del enfoque profundo de aprendizaje para prevenir el abandono de los estudiantes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ángela Zamora Menéndez, Universidad de Valladolid

Profesora Ayudante Doctora. Líneas de investigación: estudio de los errores en el proceso de enseñanza-aprendizaje y su relación con la autorregulación, la motivación y las estrategias de aprendizaje. Email: angela.zamora@uva.es

Javier Gil Flores, Universidad de Sevilla

Catedrático de Métodos de Investigación y Diagnóstico en Educación. Participación en proyectos de investigación centrados en los procesos de enseñanza-aprendizaje en la Educación Superior. Líneas de investigación: estudio de las competencias, actitudes, métodos de trabajo o gestión del
tiempo en el alumnado universitario. Email: jflores@us.es

 

Manuel Rafael de Besa Gutiérrez, Universidad de Cádiz

Profesor Sustituto Interino. Líneas de investigación: rendimiento académico y la adaptación de los estudiantes a la Educación Superior. Email: manuel.debesa@uca.es

Citas

Arias, E., & Dehon, C. (2013). Roads to Success in the Belgian French Community’s Higher Education System: Predictors of Dropout and Degree Completion at the Université Libre de Bruxelles. Research in Higher Education, 54(6), 693–723. doi: https://doi.org/10.1007/s11162-013-9290-y

Balluerka, N., Gorostiaga, A., Alonso-Arbiol, I., & Haranburu, M. (2007). Test adaptation to other cultures: A practical approach. Psicothema, 19(1), 124–133.

Berbén, A.-B., Pichardo, M., y De la Fuente, J. (2007). Relaciones entre preferencias de la enseñanza y enfoques de aprendizaje de los universitarios. Infancia & Aprendizaje, 30(4), 537–550. doi: https://doi.org/10.1174/021037007782334319

Berlanga, V., Figuera, M. P., & Pons, E. (2018). Predictive model of university persistence: Students with ‘Salary Scholarship’. Educación XX1, 21(1), 209–230. doi: https://doi.org/10.5944/educXX1.15611

Bernad, J. A. (1999). Learning strategies. Madrid: Bruño.

Bernardo, A. B., Cerezo, R., Menéndez, L. J., Nuñez, J. C., Tuero, E., y Esteban, M. (2015). Predicción del abandono universitario: variables explicativas y medidas de prevención. Revista Fuentes, (16), 63–84. doi: 10.12795/revistafuentes.2015.i16.03

Biggs, J. (1987). Student Approaches to Learning and Studying. Melburne: Australian Council for Educational Research. Retrieved from https://bit.ly/2kpcCVH

Biggs, J., Kember, D., & Leung, D. Y. P. (2001). The Revised Two Factor Study Process Questionnaire : R-SPQ-2F The Revised Two Factor Study Process Questionnaire: R-SPQ-2F. British Journal of Educational Psychology, 71, 133–149. doi: https://doi.org/10.1348/000709901158433

Blanco, A., Prieto, L., Torre, J. C., y García, M. (2009). Adaptación, validación y evaluación de la invarianza factorial del cuestionario revisado de procesos de estudio (R-SPQ-2F). En A,

Boza (coord.), Actas del IX Congreso Nacional de Modelos de Investigación Educativa sobre ‘Educación, investigación y desarrollo social’ (pp. 1535–1543). Huelva: AIDIPE-Universidad de Huelva.

Boyd, J. N., & Zimbardo, P. G. (2005). Time perspective, health, and risk taking. In A. Strathman & J. Joireman (Eds.), Understanding behavior in the context of time: Theory, research, and application (pp. 85–107). Mahwah, NJ.

Burrus, J., Elliott D., Brenneman, M., Markle, R., Carney, L., Moore, G., ... Roberts R. D. (2013). Putting and keeping students on track: Toward a comprehensive model of persistence and goal attainment. Princeton, NJ: Educational Testing Service.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.

Davidson, W., Beck, H. P., & Milligan, M. (2009). The college persistence questionnaire: Development and validation of an instrument that predicts student attrition. Journal of College Student Development, 50(4), 373–390. doi: https://doi.org/10.1353/csd.0.0079

Entwistle, N., Tait, H., & McCune., V. (2000). Patterns of Response to Approaches to Studying Inventory across Contrasting Groups and Conte. European Journal of Psychology and Education, 15(1), 33–48.

Gargallo, B., Garfella, P., & Pérez, C. (2006). Approaches to learning and academic achievement in university students. Bordón, 58(3), 45–61. doi: https://doi.org/10.1016/j.nedt.2014.02.006

Greene, B. A., & DeBacker, T. K. (2004). Gender and orientations toward the future: Links to motivation. Educational Psychology Review, 16(2), 91–120. Doi: https://doi.org/10.1023/B:EDPR.0000026608.50611.b4

Hovdhaugen, E. (2015). Working while studying: the impact of term-time employment on dropout rates. Journal of Education and Work, 28(6), 631–651. doi: https://doi.org/10.1080/13639080.2013.869311

Janeiro, I. N., Duarte, A. M., Araújo, A. M., & Gomes, A. I. (2017). Time perspective, approaches to learning, and academic achievement in secondary students. Learning and Individual Differences, 55, 61–68. doi: https://doi.org/10.1016/j.lindif.2017.03.007

Ministerio de Innovación, Ciencia y Universidades. (2019). Datos y Cifras del Sistema Educativo Español. Publicación 2018-2019. Recuperado de https://bit.ly/2NTX4Hg

Merino, C., & Kumar, R. (2013). Structural validation of the R-SPQ-2F: a confirmatory factor analysis. Revista Digital de Investigación en Docencia Universitaria, 7(1), 111–127.

Moulin, S., Doray, P., Laplante, B., & Street, M. C. (2012). Work Intensity and Non- completion of University: Longitudinal Approach and Causal Inference. Journal of Education and Work, 26(3), 333–356. doi: https://doi.org/10.1080/13639080.2011.653554

Nora, A., & Cabrera, A. F. (2010). The construct validity of Institutional Commitment: A confirmatory factor analysis. Research in Higher Education, 34(2), 243–262. doi: https://doi.org/10.1007/BF00992164

Pascarella, E. T., Seifert, T. A., & Whitt, E. J. (2008). Effective instruction and college student persistence: Some new evidence. En J. M. Braxton (Ed.), The role of the classroom in college student persistence (pp. 55–70). San Francisco.

Phan, H. P. (2009). Amalgamation of future time orientation, epistemological beliefs, achievement goals, and study strategies: Empirical evidence established. British Journal of Educational Psychology, 79(1), 155–173. doi: https://doi.org/10.1348/000709908X306864

Pérez, H. S., Gutiérrez-Braojos, C., & Fernández, S. R. (2017). The relationship of gender, time orientation, and achieving self-regulated learning. Revista de Investigacion Educativa, 35(2), 353–369. doi: https://doi.org/10.6018/rie.35.2.273141

Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychological Bulletin, 138(2), 353–387. doi: https://doi.org/10.1037/a0026838

Roska, J. (2011). Differentiation and Work: Inequality in Degree Attainment in U.S. Higher Education. Higher Education, 61(3), 293–308. doi: https://doi.org/10.1007/s10734-010-9378-7

Slijper, J., Kunnen, E. S., Onstenk, J., & van Geert, P. (2016). The Role of Time Perspective, Motivation, Attitude, and Preparation in Educational Choice and Study Progress. Education Research International, 2016, 1–15. doi: https://doi.org/10.1155/2016/1382678

Struyven, K., Dochy, F., Janssens, S., & Gielen, S. (2006). On the Dynamics of Students’ Approaches to Learning: The Effects of the Teaching/Learning Environment. Learning and Instruction, 16(4), 279–294. doi: https://doi.org/10.1016/j.learninstruc.2006.07.001

Tal, T., & Tsaushu, M. (2017). Student-centered introductory biology course: evidence for deep learning. Journal of Biological Education, 1-15. doi: https://doi.org/10.1080/00219266.2017.1385508

Tinto, V. (1975). Dropout from Higher Education: A Theoretical Synthesis of Recent Research. Review of Educational Research, 45(1), 89-125. doi: https://doi.org/10.2307/1170024

Tinto, V. (1982). Limits of Theory and Practice in Student Attrition. The Journal of Higher Education, 53(6), 687–700.

doi: https://doi.org/10.1080/00221546.1982.11780504

Tinto, V. (2010). From Theory to Action: Exploring the Institutional Conditions for Student Retention. In John C. Smart (Ed.), Higher Education: Handbook of Theory and Research (pp. 51–89). USA: Springer. doi: https://doi.org/10.1007/978-90-481-8598-6_2

Vanthournout, G., Doche, V., Gijbels, D., & Van Petegem, P. (2014). (Dis)similarities in research on learning approaches and learning patterns. In & J. D. D. Gijbels, V. Doche, J. Richardson (Ed.), Learning patterns in higher education: dimensions and research perspectives (Routledge, pp. 11–32). London.

Walsh, K. J., & Robinson Kurpius, S. E. (2016). Parental, residential, and self-belief factors influencing academic persistence decisions of college freshmen. Journal of College Student Retention: Research, Theory and Practice, 18(1), 49–67. doi: https://doi.org/10.1177/1521025115579672

Ward-Smith, P., Schmer, C., Peterson, J., & Hart, C. (2013). Persistence among graduate nursing students enrolled in an online course. Journal of Nursing Education and Practice, 3(9), 48. doi: https://doi.org/10.5430/jnep.v3n9p48

Westrick, P. A., Le, H., Robbins, S. B., Radunzel, J. M. R., & Schmidt, F. L. (2015). College Performance and Retention: A Meta-Analysis of the Predictive Validities of ACT®Scores, High School Grades, and SES. Educational Assessment, 20(1), 23–45. doi: https://doi.org/10.1080/10627197.2015.997614

Yorke, M. (1998). Non-completion of Undergraduate Study: some implications for policy in higher education. Journal of Higher Education Policy and Management, 20(2), 189–201. doi: https://doi.org/10.1080/1360080980200206

Zamora, Á., Suárez, J.M., & Ardura, D. (2018a). Error detection and self-assessment as mechanisms to promote self-regulation of learning among secondary education students. Journal of Educational Research, 111(2), 175-185. doi: https://doi.org/10.1080/00220671.2016.1225657

Zamora, Á., Suárez, J.M., & Ardura, D. (2018b). A model of the role of error detection and self-regulation in academic performance. Journal of Educational Research, 111(5), 595-602. doi:https://doi.org/10.1080/00220671.2017.1349072

Zimbardo, P. G., & Boyd, J. N. (1999). Putting time in perspective: A valid, reliable individual-differences metric. Journal of Personality and Social Psychology, 77, 1271–1288.

Zimbardo, P. G., Keough, A. K., & Boyd, N. J. (1997). Present time perspective as a predictor of risky driving. Personality and Individual Differences, 23(97), 1007–1023. doi: https://doi.org/10.1016/S0191-8869(97)00113-X

Publicado

2020-05-21

Número

Sección

Estudios