EFFECT OF A HYPERMEDIA TOOL ON THE AFFECTIVE-MOTIVATIONAL VARIABLES RELATED TO MATHEMATICS
DOI:
https://doi.org/10.5944/educxx1.20211Keywords:
Hypermedia application, mathematics, perceived usefulness, perceived competence, intrinsic motivation, anxiety.Abstract
One of the limitations in the learning of mathematics is the affective-motivational variables of students towards this subject. Thus, variables such as perceived usefulness, perceived competence, intrinsic motivation and anxiety towards mathematics play a key role in the learning of this subject.Given the new methodologies in the teaching of mathematics such as digital whiteboards and hypermedia applications, what we pretend with this study is to analyze the benefits of those new technologies in the affective-motivational variables mentioned and if such benefits are related to the previous affective-motivational levels in these same variables. To achieve this goal we worked with 425 fifth and sixth grade students who received an intervention with a hypermedia tool. The affective-motivational levels of all students were collected before and after treatment using the Inventory of Attitudes towards Mathematics. The results of the t Student Test for related samples showed statistically significant differences in the post-test compared to pretest variables in perceived competence and math anxiety. In addition, the students with low prior affective- motivational levels showed greater benefit from the intervention.
These results are discussed based on the conclusions of past research
but future research lines are suggested.
Downloads
References
Ahmed, W., Minnaert, A., Kuyper, H., & Van der Werf, G. (2012). Reciprocal relationships between math self-concept and math anxiety. Learning and Individual Differences, 22(3), 385-389.
Al-Qirim, N. (2011). Determinants of interactive white board success in teaching in higher education institutions. Computers & Education, 56(3), 827-838. doi: 10.1016/j.lindif.2011.12.004
Andrade-Aréchiga, M., Lopez, G., & Lopez-Morteo, G. (2012). Assessing effectiveness of learning units under the teaching unit model in an undergraduate mathematics course. Computers & Education, 59(2), 594-606. doi: 10.1016/j.compedu.2012.03.010
Azevedo, R., Moos, D. C., Johnson, A. M., & Chauncey, A. D. (2010). Measuring cognitive and metacognitive regulatory processes during hypermedia learning: Issues and challenges. Educational Psychologist, 45(4), 210-223. doi: 10.1080/00461520.2010.515934
Bazán, L., y Aparicio, A. S. (2006). Las actitudes hacia la matemática-estadística dentro de un modelo de aprendizaje. Revista de Educación, 15(28), 7-20.
Brown, G. (2009). Review of education in mathematics, data science and quantitative disciplines. Australia: Report to the Group of Eight Universities.
Casal, J., y Mateu, E. (2003). Tipos de muestreo. Revista de Epidemiología y Medicina preventiva, 1, 3-7.
Cerezo, R., Núñez, J. C., Rosário, P., Valle, A., Rodríguez, S., & Bernardo, A. (2010). New media for the promotion of self-regulated learning in higher education. Psicothema, 22(2), 306-315.
Contreras, F., Espinosa, J. C., Esguerra, G., Haikal, A., Polanía, A., y Rodríguez, A. (2005). Autoeficacia, ansiedad y rendimiento académico en adolescentes. Perspectivas de Psicología, 1(2), 183-194.
Cueli, M., González-Castro, P., Álvarez, L., García T., y González-Pienda, J. A. (2014). Variables afectivo-motivaciones y rendimiento en matemáticas: Un análisis bidireccional. Revista Mexicana de Psicología, 31(2), 153-163.
Cueli, M., González-Castro, P., Krawec, J., Núñez, J. C., & González-Pienda, J. A. (2016). Hipatia: a hypermedia learning environment in mathematic. Anales de Psicología, 32(1), 98-105. doi: http://dx.doi.org /10.6018/analesps. 32.1.185641
Dettmers, S., Trautwein, U., Lüdtke, O., Goetz, T., Frenzel, A., & Pekrun, R. (2011). Students’ emotions during homework in mathematics: Testing a theoretical model of antecedents and achievement outcomes. Contemporary Educational Psychology, 36(1), 25–35. doi: 10.1016/j.cedpsych.2010.10.001
Engel, A., y Onrubia, J. (2013). Estrategias discursivas para la construcción colaborativa del conocimiento en entornos virtuales de aprendizaje. Cultura y Educación, 25(1), 77-94. doi: 10.1174/113564013806309082
Fennema, E., & Sherman, J. A. (1978). Sex-related differences in mathematics achievement and related factors: A further study. Journal for Research in Mathematics Education, 9(3), 189-203.
García-Varcárcel, A., y Tejedor, F. J. (2012). Variables TIC vinculadas a la generación de nuevos escenarios de aprendizaje en la enseñanza universitaria. Aporte de las curvas Roc para el análisis de diferencias. Educación XX1, 14(2), 43-78.
González, R., Valle, A., Suárez, J. M., y Fernández, A. (2000). Diferencias en los componentes cognitivo y afectivomotivacional entre distintos niveles de aprendizaje autorregulado en estudiantes universitarios. Bordon: Revista de Pedagogía, 52(4), 537-554.
González-Pienda, J. A., Fernández-Cueli, M., García, T., Suárez, N., Tuero-Herrero, E., y Da Silva, E. H. (2012). Diferencias de género en actitudes hacia las matemáticas en la enseñanza obligatoria. Revista Iberoamericana de Psicología y Salud, 3(1), 55-73.
Hintsanen, M., Alatupa, S., Jokela, M., Lipsanen, J., Hintsa, T., & Leino, M. (2012). Associations of temperament traits and mathematics grades in adolescents are dependent on the rater but independent of motivation and cognitive ability. Learning and Individual Differences, 122(4), 490-497. doi: 10.1016/j.lindif.2012.03.006
Kaput, J., & Hegedus, S. (2007). Technology becoming infrastructural in mathematics education. In R. Lesh, E. Hamilton, y J. Kaput (Eds.), Proceedings of the foundations for the future in mathematics and science (pp. 173–192). Mahwah, NJ: Lawrence Erlbaum.
Keengwe, J., Onchwari, G., & Wachira, P. (2008). The use of computer tools to support meaningful learning. Association for the Advancement of Computing in Education Journal, 16(1), 77–92.
Kersaint, G. (2007). Toward technology integration in mathematics education: a technology-integration course planning assignment. Contemporary Issues in Technology and Teacher, 7(4), 256–278.
Kikas, E., Peets, K., Palu, A., & Afanasjev, J. (2009). The role of individual and contextual factors in the development of math skills. Educational psychology, 29, 541–560. doi: http://dx.doi.org/10.1080/01443410903118499.
Kim, C., & Hodges, C. B. (2012). Effects of an emotion control treatment on academic emotions, motivation and achievement in an online mathematics course. Instructional Science, 40(1), 173-192.doi: 10.1007/s11251-011-9165-6
Kopcha, T. J., & Sullivan, H. (2008). Learner Preferences and Prior Knowledge in Learner-Controlled Computer-Based Instruction. Educational
Technology Research and Development, 56(3), 265-286. doi: 10.1007/s11423-007-9058-1
Kroesbergen, E. H., y Van Luit, J. E. H. (2003). Mathematics interventions for children with special educational needs. Remedial and Special Education, 24(2), 97-114. doi: 10.1177/07419325030240020501
Lambic, D., & Lipkovski, A. (2012). Measuring the influence of students´attitudes on the process of acquiring knowledge in mathematics. Croatian Journal of Education-Hrvatski Casopis za Odgoji Obrazovanje, 14(1), 187-205.
Lazakidou, G., & Retalis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers & Education, 54(1), 3–13. doi: 10.1016/j.compedu.2009.02.020
Loong, E. Y. K., & Herbert, S. (2012). Student perspectives of Web-based mathematics. International Journal of Educational Research, 53, 117-126. doi: 10.1016/j.ijer.2012.03.002
López-Vargas, O., Hederich-Martínez, C., y Camargo-Uribe, A. (2012). Logro de aprendizaje en ambientes hipermediales: andamiaje autorregulador y estilo cognitivo. Revista Latinoamericana de Psicología, 44(2), 13-26. doi: http://dx.doi.org/10.14349/rlp.v44i2.1028
Macias-Ferrer, D. (2007). Las nuevas tecnologías y el aprendizaje de las matemáticas. Revista Iberoamericana de Educación, 42(4), 1-17.
Martínez-Berruezo, M., & García-Varela, A. (2013). Analysis of the impact of virtualization on motivation in first-year teaching students. Revista de Educación, 362, 42-68. doi: 0.4438/1988-592X-RE-2011-362-152
Olkun, S., Altun, A., & Deryakulu, D. (2009). Development and evaluation of a case-based digital learning tool about children’s mathematical thinking for elementary school teachers. European Journal of Teacher Education, 32(2), 151-165.
Oncu, S., Delialioglu, O., y Brown, C. (2008). Critical components for technology integration: how do instructors make decisions? Journal of Computers in Mathematics and Science Teaching, 27(1), 19–46.
Op’tEynde, P., & Turner, J. (2006). Focusing on the complexity of emotion issues in academic learning: A dynamical component systems approach. Educational Psychology Review, 18(4), 361–376. doi:10.1007/s10648-006-9031-2.
Özyurt, H. (2012). Implementation and evaluationof a web based mathematics teaching system enriched with interactive animations for the probability unit. Energy Education Science and TechnologyPart b-social and Educational Studies, 4(3), 1167-1180.
Özyurt, O., Özyurt, H., Baki, A., Güven, B., & Karal. (2012). Evaluation of an adaptive and intelligent educational hypermedia for enhanced individual learning of mathematics: A quialitative study. Expert Systems with Applications, 39(15), 12092-12104. doi: http://dx.doi.org/10.1016 /j.eswa.2012.04.018
Pajares, F. (1996). Self-efficacy beliefs in Academic Settings. Review of educational research, 66(4), 543-578.
Purvis, A., Aspden, L., Bannister, P., & Helm, P. (2011). Assessment strategies to support higher level learning in blended delivery. Innovations in Education and Teaching International, 48(1), 91–100. doi: 10.1080/14703297.2010.543767
Reed, H., Drijvers, P., & Kirschner, P. (2010). Effects of attitudes and behaviors on learning mathematics with computer tools. Computers & Education, 55(1), 1–15. doi: 10.1016/j.compedu.2009.11.012
Rodríguez, R., Gil, A. B., García, F. J., & López, R. (2008). SHARP Online: An Adaptive Hypermedia System Applied to Mathematical Problem Solving. Journal of Universal Computer Science, 14(19), 3099-3113.
Rosario, P., González-Pienda, J. A., Cerezo, R., Pinto, R., Ferreira, P., Abilio, L., y Olimpia, P. (2010). Eficacia del programa «(Des)venturas de Testas» para la promoción de un enfoque profundo de estudio. Psicothema, 22(4), 828-834.
Rosario, P., Lourenço, A., Olímpia-Paiva, M., Núñez, J. C., González-Pienda, J. A., y Valle, A. (2012). Autoeficacia y utilidad percibida como condiciones necesarias para un aprendizaje académico autorregulado. Anales de Psicología, 28(1), 37-44
Swanson, H. L. (1999). Instructional components that predict treatment outcomes for student with learning disabilities: Support for a combined strategy and direct instruction model. Learning Disabilities Research and Practice, 14(3), 129-140. doi: 10.1207/sldrp1403_1
Tamar, L., & Rivka, W. (2008). Teachers’ views on factors affecting effective integration of information technology in the classroom: developmental scenery. Journal of Technology and Teacher Education, 16(2), 233–263.
Walker, A., Recker, M., Ye, L., Robertshaw, M. B., Sellers, L., & Leary, H. (2012). Comparing technology-related teacher professional development designs: a multilevel study of teacher and student impacts. Educational technology research and development, 60(3), 421-444.doi: 10.1007/s11423-012-9243-8.
Walshaw, M., & Brown, T. (2012). Affective productions of mathematical experience. Educational Studies in Mathematics, 80(1), 185-199.doi: 10.1007/s10649-011-9370-x.
Watt, H. M. G., (2000). Measuring attitudinal change in mathematics and English over 1st year of junior high school: A multidimensional analysis. The Journal of Experimental Education, 68(4), 331- 361.
Yerkes R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482. doi: 10.1002/cne.920180503
Zimmerman, B. J. (2000). Attaining selfregulation: A social cognitive perspective.In M. Boekaerts, P. R. Pintrichy M. Zeidner (Eds.), Handbook of selfregulation (pp. 13-40). San Diego, California: Academic Press.
Zimmerman, B. J. (2008). Goal setting: A key proactive source of academic self-regulation. In D. H. Schunky & B. J. Zimmerman (Eds.), Motivation and self-regulated learning. Theory, research and applications (pp. 267-295). New York: Lawrence Erlbaum Associates.
— (2011). Motivational sources and outcomes of self-regulated learning and performance. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 49-64). New York: Routledge.
Downloads
How to Cite
Issue
Section
License
Educación XX1 is published under a Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0)