Primary school teachers' attitudes toward visual block programming: differences by ssex and age
DOI:
https://doi.org/10.5944/educxx1.42387Keywords:
teacher attitudes, elementary school teachers, programming, computational thinking, gender differences, age differencesAbstract
In the current era of artificial intelligence, the teaching of programming has become more relevant in the elementary school curriculum, especially through Visual Block Programming as a tool for developing Computational Thinking. This study analyses the attitudes of elementary school teachers towards Visual Block Programming and examines possible differences according to sex and age. The research adopted a non-experimental cross-sectional design with a quantitative approach. A scale with three dimensions (Self-efficacy, Relevance, and Interest) was applied, and its structure was confirmed through a Confirmatory Factor Analysis. The sample consisted of 492 elementary school teachers in Spain. Descriptive analyses and statistical tests such as Student's t-test, one-way ANOVA and Pearson's correlation were used, using IBM SPSS and Jamovi for data processing. When parametric assumptions were not met, non-parametric methods were applied. The results indicate that elementary school teachers show a moderate overall attitude towards Visual Block Programming (3.18), with high perceived relevance (3.65) and interest (3.33), but low self-efficacy (2.54). Male teachers have significantly higher self-efficacy than their female counterparts, although both sexs share the perception of the educational value of Visual Block Programming. In addition, younger teachers (22-30 years) show greater confidence in their ability to teach it, while age does not influence relevance and interest. These findings underline the need to implement differentiated training programmes that reinforce self-efficacy in older teachers and reduce the sex gap, promoting a more inclusive and effective integration of Visual Block Programming in elementary education.
Downloads
References
Acosta, P. M. C. (2021). Pensamiento computacional: habilidades asociadas y recursos didácticos. Innovaciones Educativas, 23 (Especial), 178-189. https://doi.org/10.22458/ie.v23iespecial.3693
Bandura, A. (1987). Pensamiento y Acción. Ediciones Martínez Roca. Bocconi, S., Chioccariello, A., Kampylis, P., Dagiené, V., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M., Jasuté, E., Malagoli, C., Masiulionyté-Dangiené, V., & Stupuriené, G. (2022). Reviewing Computational Thinking in Compulsory Education. Publications Office of the European Union. https://doi.org/10.2760/126955
Boletín Oficial del Estado [BOE]. (2018). Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales.
Boletín Oficial del Estado, 294, de 7 de diciembre de 2018. BOE-A2018-16673. Recuperado de https://www.boe.es/eli/es/lo/2018/12/05/3/con
Boletín Oficial del Estado [BOE]. (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación.
Boletín Oficial del Estado, 340, de 30 de diciembre de 2020, 122868-122953. Recuperado de https://bit.ly/46iano7
Declaración Helsinki. (2017). Declaración de Helsinki de la AMM. Principios éticos para las investigaciones médicas en seres humanos. Asociación Médica Mundial.
Espino Espino, E. E., & González González, C. S. (2015). Estudio sobre diferencias de género en las competencias y las estrategias educativas para el desarrollo del pensamiento computacional. Revista de Educación a Distancia (RED), 46. Recuperado de https://revistas.um.es/red/article/view/240171
Fagerlund, J., Leino, K., Kiuru, N., & Niilo-Rämä, M. (2022). Finnish teachers’ and students’ programming motivation and their role in teaching and learning computational thinking. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.948783
Fang, Z. (1996). A review of research on teacher beliefs and practices. Educational Research, 38(1), 47–65. https://doi.org/10.1080/0013188960380104
Finnish National Agency of Education (2016). National core curriculum for basic education. Helsinki: Finnish National Board of Education.
García-Ruiz, R., Buenestado-Fernández, M., & Ramírez-Montoya, M. S. (2023). Evaluación de la Competencia Digital Docente: instrumentos, resultados y propuestas. Revisión sistemática de la literatura. Educación XX1, 26(1), 273-301. https://doi.org/10.5944/educxx1.33520
González-Cervera, A., Martín-Carrasquilla, O., & González-Arechavala, Y. (2024). Validación de contenido de una escala sobre actitudes hacia la programación y el pensamiento computacional en docentes de Primaria a partir del método Delphi. Pixel-Bit. Revista de Medios y Educación, 70, 61–79. https://doi.org/10.12795/pixelbit.103692
Hestness, E., Ketelhut, D. J., McGinnis, J. R., & Plane, J. (2018). Professional knowledge building within an elementary teacher professional development experience on computational thinking in science education. Journal of Technology and Teacher Education, 26, 411–435. https://www.learntechlib.org/primary/p/181431/
Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on elementary preservice teachers’ self-efficacy, science learning, and computational thinking. Journal of Science Education and Technology, 26(2), 175–192. https://doi.org/10.1007/s10956-016-9663-z
Jiang, B., & Li., Z. (2021). Effect of Scratch on computational thinking skills of Chinese primary school students. Journal of Computers in Education, 8(4), 505–525. https://doi.org/10.1007/s40692-021-00190-z
Jung, U., Lee, J., Choi, J., Yim, H., & Lee, M. (2023). Future service robot scenarios in South Korea. Sustainability, 15(22), 15679. https://doi.org/10.3390/su152215679
K–12 Computer Science Framework. (2016). K-12 computer science framework. Recuperado de http://www.k12cs.org
Kiliç, S. (2022). Tendencies towards Computational Thinking: A Content Analysis Study. Participatory Educational Research, 9(5), 288–304. https://doi.org/10.17275/per.22.115.9.5
Liu, J., Li, Q., Sun, X., Zhu, Z., & Xu, Y. (2021). Factors influencing programming self-efficacy: an empirical study in the context of Mainland China. Asia Pacific Journal of Education, 43(3), 835–849. https://doi.org/10.1080/02188791.2021.1985430
Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning computational thinking and Scratch at a distance. Computers in Human Behaviour, 80, 470–477. https://doi.org/10.1016/j.chb.2017.09.025
Mason, S. L., & Rich, P. J. (2019). Preparing elementary school teachers to teach computing, coding, and computational thinking. Contemporary Issues in Technology and Teacher Education, 19(4), 790–824. https://www.learntechlib.org/primary/p/184723/
Ministerio de Educación, Formación Profesional y Deportes [MEFD]. Igualdad en cifras. MEFD 2024. Secretaria General Técnica. https://bit.ly/4iEQ4Y7
Negrini, L. (2020). Teachers’ attitudes towards educational robotics in compulsory school. Italian Journal of Educational Technology, 28(1), 77–90. https://doi.org/10.17471/2499-4324/1136
Ortuño, G., & Serrano, J. L. (2024). Implementación y formación del profesorado de educación primaria en pensamiento computacional: una revisión sistemática. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 255-287. https://doi.org/10.5944/ried.27.1.37572
Papert, S. (1980). Mindstorms. Children, computers and powerful ideas. Basic books.
Pérez-Calderón, E., Prieto-Ballester, J., & Miguel-Barrado, V. (2021). Analysis of Digital Competence for Spanish Teachers at Pre-University Educational Key Stages during COVID-19. International Journal of Environmental Research and Public Health, 18(15), 8093. https://doi.org/10.3390/ijerph18158093
Piedade, J. M. N. (2021). Pre-service and in-service teachers’ interest, knowledge, and self-confidence in using educational robotics in learning activities. EDUCAÇÃO & FORMAÇÃO, 6(1), e3345. https://doi.org/10.25053/redufor.v6i1.3345
Rich, P. J., Browning, S. F., Perkins, M., Shoop, T., Yoshikawa, E., & Belikov, O. M. (2019). Coding in K-8: International trends in teaching elementary/primary computing. TechTrends, 63(3), 311–329. https://doi.org/10.1007/s11528-018-0295-4
Rich, P. J., Larsen, R. A., & Mason, S. L. (2020). Measuring Teacher Beliefs about Coding and Computational Thinking. Journal of Research on Technology in Education, 53(3), 296-316. https://doi.org/10.1080/15391523.2020.1771232
Román-González, M., Pérez-González, J., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behaviour, 72, 678. https://doi.org/10.1016/j.chb.2016.08.047
Sun, L., & Liu, J. (2024). A gender differential analysis of educational robots’ effects on primary teachers’ computational thinking: Mediating effect of programming attitudes. Education and Information Technologies, 29, 19753-19782. https://doi.org/10.1007/s10639-024-12655-6
Sun, L., & Zhou, D. (2023). K-12 teachers’ programming attitudes among different disciplines: Analysis of influential factors. Journal of Computer Assisted Learning, 40(2), 375-930. https://doi.org/10.1111/jcal.12895
Torres-Torres, Y.-D., Román-González, M., & Perez-González, J.-C. (2024). Didactic strategies for the education of computational thinking from a gender perspective: A systematic review. European Journal of Education, 59(e12640). https://doi.org/10.1111/ejed.12640
UNESCO. (2019). Educación de niñas y mujeres en STEM: Un estudio sobre el impacto de género en el acceso y la participación en la educación STEM. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000366649
Vasconcelos, L., Ari, F., Arslan-Ari, I., & Lamb, L. (2022). Female preservice teachers stereotype computer scientists as intelligent and overworked. White individuals wearing glasses. Computers & Education, 187, 104563. https://doi.org/10.1016/j.compedu.2022.104563
Villalustre, L., & Cueli, M. (2023). Assessing the Computational Thinking of Pre-Service Teachers: A Gender and Robotics Programming Experience Analysis. Education Sciences, 13, 1032. https://doi.org/10.3390/educsci13101032
Wijnen, F., Walma Van Der Molen, J., & Voogt, J. (2024). Measuring primary school teachers’ attitudes towards new technology use: development and validation of the TANT questionnaire. SN Social Sciences, 4(32). https://doi.org/10.1007/s43545-024-00836-6
Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
Young, D. M., Rudman, L. A., Buettner, H. M., & McLean, M. C. (2013). The Influence of Female Role Models on Women’s Implicit Science Cognitions. Psychology of Women Quarterly, 37(3), 283-292. https://doi.org/10.1177/0361684313482109
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ana Gonzalez Cervera, Olga Martín-Carrasquilla, Yolanda González-Arechavala

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Educación XX1 is published under a Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0)
