Predominio del género del alumno en sus interacciones diarias con los dispositivos en Internet

Autores/as

  • Inés María González Vidal Universidad Santiago de Compostela

DOI:

https://doi.org/10.5944/reec.39.2021.27577

Palabras clave:

PISA, estudiantes, diferencias de género, Matemáticas, internet, juegos online, redes sociales, Educación Virtual

Resumen

La crisis sanitaria COVID-19 visualiza la innovación tecnológica como una forma de mejorar la equidad en la educación. Las diferencias de género en la educación están bajo investigación constante debido a las consecuencias a largo plazo en el futuro personal y profesional de los estudiantes. Este trabajo pretende analizar la prevalencia del género del alumno en sus interacciones diarias con los dispositivos en Internet. Apoyado en la metodología de investigación de educación comparada, se contrastan muestras repre- sentativas de una población de estudiantes de España, de la UE (Unión Europea) y la OCDE (Organización para la Cooperación y el Desarrollo Económicos). El análisis de regresión y un ajuste por coeficiente de determinación determinaron la intensidad de la relación de dependencia entre las variables independientes: participación diaria en redes sociales, participación diaria en juegos online, lectura diaria de noticias online y la variable dependiente es la puntuación media de matemática. Los resultados se comparan con investigaciones similares, se muestra la existencia de patrones de comportamiento en las respuestas de los estudiantes atendiendo al género en sus interacciones diarias con dispositivos en Internet. Este trabajo destaca la importancia de un enfoque de género para mejorar las propuestas educativas en entornos virtuales de enseñanza.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Inés María González Vidal, Universidad Santiago de Compostela

Dra. en Ciencias de la Educación e Ingeniera Automática. Experiencia como docente e investigadora.

Citas

Adick, C. (2018). Bereday and Hilker: origins of the ‘four steps of comparison model. Comparative Education, 54(1), 35-48. DOI: https://doi.org/10.1080/03050068.2017.1396088.

Adell, J., and Castañeda Quintero, L. J. (2013). El ecosistema pedagógico de los PLEs.

Arroyo, I., Burleson, W., Tai, M., Muldner, K., and Woolf, B. P. (2013). Gender differences in the use and benefit of advanced learning technologies for mathematics. Journal of Educational Psychology, 105(4), 957. DOI: https://doi.org/10.1037/a0032748.

Azorín, C. (2020). Beyond COVID-19 supernova. Is another education coming?. Journal of Professional Capital and Community. DOI: https://doi.org/10.1108/JPCC-05-2020-0019.

Bouvier, P., Sehaba, K., and Lavoué, É. (2014). A trace-based approach to identifying users’ engagement and qualifying their engaged-behaviours in interactive systems: application to a social game. User Modeling and User-Adapted Interaction, 24(5), 413-451.

Boyer, K. E., Phillips, R., Wallis, M., Vouk, M., and Lester, J. (2008, June). Balancing cognitive and motivational scaffolding in tutorial dialogue. In International conference on intelligent tutoring systems (pp. 239-249). Springer, Berlin, Heidelberg.

Brusilovsky, P., and Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In The adaptive web (pp. 3-53). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-540-72079-9_1.

Burleson, W., and Picard, R. W. (2007). Gender-specific approaches to developing emotionally intelligent learning companions. IEEE Intelligent Systems, 22(4), 62-69.

Castañeda, L., and Selwyn, N. (2020). Reiniciando la universidad: Buscando un modelo de Universidad en tiempos digitales. Editorial UOC.

Cebrián, A., Trillo, A. and González, A. (2019) PISA 2018. Programa para la Evaluación Internacional de los Estudiantes. Informe español. Ministerio de Educación.

Craig, S., Graesser, A., Sullins, J., and Gholson, B. (2004). Affect and learning: an exploratory look into the role of affect in learning with AutoTutor. Journal of educational media, 29(3), 241-250.

Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., and Lam, S. (2020). COVID-19: 20 countries' higher education intra-period digital pedagogy responses. Journal of Applied Learning and Teaching, 3(1), 1-20. DOI: https://doi.org/10.37074/jalt.2020.3.1.7.

Delphy, C. (1993, January). Rethinking sex and gender. In Women's Studies International Forum (Vol. 16, No. 1, pp. 1-9). Pergamon.

Dennis, M., Masthoff, J., and Mellish, C. (2012, July). Adapting performance feedback to a learner’s conscientiousness. In International Conference on User Modeling, Adaptation, and Personalization (pp. 297-302). Springer, Berlin, Heidelberg.

Desmarais, M. C., and Baker, R. S. (2012). A review of recent advances in learner and skill modeling in intelligent learning environments. User Modeling and User-Adapted Interaction, 22(1-2), 9-38.

Feinstein, N. W., and Mach, K. J. (2020). Three roles for education in climate change adaptation. Climate Policy, 20(3), 317-322. https://doi.org/10.1080/14693062.2019.1701975.

Feng, J., Spence, I., and Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological science, 18(10), 850-855. DOI: https://doi.org/10.1111/j.1467-9280.2007.01990.x.

García Aretio, L. (2020). Los saberes y competencias docentes en educación a distancia y digital. Una reflexión para la formación. RIED. Revista Iberoamericana de Educación a Distancia, 23(2). doi: https://dx.doi.org/10.5944/ried.23.2.26540.

Garmendia, L. M. N. (2000). Las tecnologías de la información y comunicación y la Sociedad Española de Educación Comparada. Revista Española de Educación Comparada, (6), 247-258 DOI: https://doi.org/10.5944/reec.6.2000.7300.

Guerra, J., Hosseini, R., Somyurek, S., and Brusilovsky, P. (2016, March). An intelligent interface for learning content: Combining an open learner model and social comparison to support self-regulated learning and engagement. In Proceedings of the 21st international conference on intelligent user interfaces (pp. 152-163). DOI: https://doi.org/10.1145/2856767.2856784 .

Gutiérrez, E. J. D., and Espinoza, K. G. (2020). Educar y evaluar en tiempos de Coronavirus: la situación en España. Multidisciplinary Journal of Educational Research. DOI: https://dx.doi.org/10.17583/remie.2020.5604.

Ingram, N., Hatisaru, V., Grootenboer, P., and Beswick, K. (2020). Researching the Affective Domain in Mathematics Education. In Research in Mathematics Education in Australasia 2016–2019 (pp. 147-175). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-4269-5_7.

Jackson, G. T., and Graesser, A. C. (2007). Content matters: An investigation of feedback categories within an ITS. Frontiers in Artificial Intelligence and Applications, 158, 127.

Johnson, C. C., Mohr-Schroeder, M. J., Moore, T. J., and English, L. D. (Eds.). (2020). Handbook of Research on STEM Education. Routledge.

López, J. M. V., and Ruiz, M. J. G. (2015). Twenty years of REEC: promoting a new future. Revista Española de Educación Comparada, (25), 9-11. DOI: https://doi.org/10.5944/reec.25.2015.14780.

Muldner, K., Burleson, W., Van de Sande, B., and VanLehn, K. (2011). An analysis of students’ gaming behaviors in an intelligent tutoring system: Predictors and impacts. User modeling and user-adapted interaction, 21(1-2), 99-135. DOI: https://doi.org/10.1007/s11257-010-9086-0.

Pallarès Piquer, M., Chiva Bartoll, Ó., Planella, J., and López Martín, R. (2019). Repensando la educación. Trayectoria y futuro de los sistemas educativos modernos. Perfiles educativos, 41(163), 143-157. DOI: https://doi.org/10.22201/iisue.24486167e.2019.163.58843.

Rahimi, Z., and Hashemi, H. B. (2013, July). Turn-taking behavior in a human tutoring corpus. In International Conference on Artificial Intelligence in Education (pp. 778-782). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-39112-5_111.

Raventós, F., and Prats, E. (2012). Sociedad del conocimiento y globalización: nuevos retos para la educación comparada. DOI: https://doi.org/10.5944/reec.20.2012.7592.

Rust, V. D. (2003). Method and methodology in comparative education. DOI: https://doi.org/10.1086/378246.

Sala, F. J. A. (2020). La Educación Secundaria en España en Medio de la Crisis del COVID-19. International Journal of Sociology of Education. DOI: https://dx.doi.org/10.17583/rise.2020.5749.

Salinas, J. (2012). La investigación ante los desafíos de los escenarios de aprendizaje futuros. Revista de educación a distancia, (32). DOI: https://doi.org/10.6018/red/50/13.

Schipper, T. M., van der Lans, R. M., de Vries, S., Goei, S. L., and van Veen, K. (2020). Becoming a more adaptive teacher through collaborating in Lesson Study? Examining the influence of Lesson Study on teachers’ adaptive teaching practices in mainstream secondary education. Teaching and Teacher Education, 88, 102961. DOI: https://doi.org/10.1016/j.tate.2019.102961.

Semeraro, C., Giofrè, D., Coppola, G., Lucangeli, D., and Cassibba, R. (2020). The role of cognitive and non-cognitive factors in mathematics achievement: The importance of the quality of the student-teacher relationship in middle school. Plos one, 15(4), e0231381. DOI: https://doi.org/10.1371/journal.pone.0231381.

Tam, H. L., Chan, A. Y. F., and Lai, O. L. H. (2020). Gender stereotyping and STEM education: girls’ empowerment through effective ICT training in Hong Kong. Children and Youth Services Review, 105624. https://doi.org/10.1016/j.childyouth.2020.105624.

Tekola, N. H., Getahun, D. A., and Hagos, H. (2020). Gender Similarities in High School Mathematics: Affective and Cognitive Aspects. Bahir Dar Journal of Education, 19(2).

Troussas, C., and Virvou, M. (2020). Intelligent, Adaptive and Social e-Learning in POLYGLOT. In Advances in Social Networking-based Learning (pp. 33-57). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-39130-03.

Unger, R. K. (1979). Toward a redefinition of sex and gender. American Psychologist, 34(11), 1085–1094. https://doi.org/10.1037/0003-066X.34.11.1085.

Vail, A. K., Boyer, K. E., Wiebe, E. N., and Lester, J. C. (2015, June). The Mars and Venus effect: The influence of user gender on the effectiveness of adaptive task support. In International Conference on User Modeling, Adaptation, and Personalization (pp. 265-276). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-20267-9_22.

Vidal, I. M. G., de Barros Costa, E., da Silva, L. D., de Araújo, F. F., and Ferreira, R. (2016). A Hypermedia-based Adaptive Educational System for Assisting Students in Systems and Information Technology Domain for Accountability. In New Advances in Information Systems and Technologies (pp. 277-286). Springer, Cham.

Wang, S., Christensen, C., Cui, W., Tong, R., Yarnall, L., Shear, L., and Feng, M. (2020). When adaptive learning is effective learning: comparison of an adaptive learning system to teacher-led instruction. Interactive Learning Environments, 1-11. DOI: https://doi.org/10.1080/10494820.2020.1808794.

Zhang, L., Basham, J. D., and Yang, S. (2020). Understanding the implementation of personalized learning: A research synthesis. Educational Research Review, 100339. DOI: https://doi.org/10.1016/j.edurev.2020.100339.

Wongwatkit, C., Panjaburee, P., Srisawasdi, N., and Seprum, P. (2020). Moderating effects of gender differences on the relationships between perceived learning support, intention to use, and learning performance in a personalized e-learning. Journal of Computers in Education, 1-27. DOI: https://doi.org/10.1007/s40692-020-00154-9.

Descargas

Publicado

2021-06-27

Cómo citar

Vidal, I. M. G. (2021). Predominio del género del alumno en sus interacciones diarias con los dispositivos en Internet. Revista Española de Educación Comparada, (39), 254–270. https://doi.org/10.5944/reec.39.2021.27577