Gender differences in mental rotation tests: a geometry-teaching perspective
DOI:
https://doi.org/10.5944/educxx1.33150Keywords:
mental rotation, PMA test, complex problem solving, gender differencesAbstract
According to reports in the literature, males score higher on certain mental rotation tests and complex problem-solving exercises than females. This study analyzes the types of errors made in the Primary Mental Abilities (PMA) space relations sub-test test by 328 secondary school students (ages 13 to 16), 143 of whom, having exhibited complex mathematical problem-solving abilities, were participating in a mathematical talent enhancement programme. The error types detected are defined in terms of angle of rotation of the object and the presence of symmetries in the items of the test. The findings show significantly higher performance in the more mathematically gifted students. Gender differences are only evidenced in the total score of the test and the number of non-answered items, where boys got higher scores than girls. Moreover, there is no significant interaction between the independent variables gender and complex mathematical problem-solving abilities. The conclusions drawn from those findings introduce nuances in the understanding of the gender difference traditionally identified in visualisation, particularly in connection with geometric properties in mental rotation tests. It is stressed that educational research focuses on other aspects, like emotional or behavioural ones that can impact test execution, like speed or the use of less efficient strategies.
Downloads
References
Alansari, B. M., DerEgowski, J. B., & McGeorge, P. (2008). Sex differences in spatial visualization of Kuwaiti school children. Social Behavior and Personality, 36(6), 811-824. https://doi.org/10.2224/sbp.2008.36.6.811
Arendasy, M. E., & Sommer, M. (2012). Gender differences in figural matrices: The moderating role of item design features. Intelligence, 40(6), 584-597. https://doi.org/10.1016/j.intell.2012.08.003
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241. https://doi.org/10.1023/A:1024312321077
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21(1), 47-60. https://doi.org/10.2307/749456
Benbow, C. P., & Stanley, J. C. (1996). Inequity in equity: How ‘‘equity’ can lead to inequity for high potential students. Psychology, Public Policy and Law, 2, 249-292. https://doi.org/10.1037/1076-8971.2.2.249
Bench, S. W., Lench, H. C., Liew, J., Miner, K., & Flores, S. A. (2015). Gender gaps in overestimation of math performance. Sex Roles, 72, 536-546. https://doi.org/10.1007/s11199-015-0486-9
Campos, A. (2014). Gender differences in imagery. Personality and Individual Differences, 59, 107–111. https://doi.org/10.1016/j.paid.2013.12.010
Cheng, Y., & Mix, K. S. (2014). Spatial training improves children´s mathematics ability. Journal of Cognition and Development, 15(1), 2-11. https://doi.org/10.1080/15248372.2012.725186
Clements, M. K. (1980). Analyzing children’s errors on written mathematical tasks. Educational Studies in Mathematics, 11, 1-21. https://doi.org/doi:10.1007/BF00369157
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. En D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). MacMillan.
Contreras, M. J., Martínez-Molina, A., & Santacreu, J. (2012). Do the sex differences play such an important role in explaining performance in spatial tasks? Personality and Individual Differences, 52(6), 659-663. https://doi.org/10.1016/j.paid.2011.12.010
Contreras, M. J., Rubio, V., Peña, D., Colom, R., & Santacreu, J. (2007). Sex differences in dynamic spatial ability: The unsolved question of performance factors. Memory & Cognition, 35(2), 297-303. https://doi.org/10.3758/BF03193450
Corbett, C., Hill, C., & St. Rose, A. (2008). Where the girls are: The facts about gender equity in education-executive summary. Educational Foundation, American Association of University Women.
Cruz, A. & Ramírez, R. (2018). Componentes del sentido espacial en un test de capacidad espacial. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García-García, & A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 211-220). SEIEM.
Delgado, A., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32, 25-32. https://doi.org/10.1016/S0160-2896(03)00061-8
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053
Ganley, C. M., & Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills and attitudes. Journal of Applied Developmental Psychology, 32(4), 235-242. https://doi.org/10.1016/j.appdev.2011.04.001
Gibbs, B. G. (2010). Reversing fortunes or content change? Gender gaps in math-related skill throughout childhood. Social Science Research, 39(4), 540-569. https://doi.org/10.1016/j.ssresearch.2010.02.005
Goldstein, D., Haldane, D., & Mitchell, C. (1990). Sex differences in visual-spatial ability: The role of performance factors. Memory & Cognition, 18(5), 546-550. https://doi.org/10.3758/BF03198487
González-Calero, J. A., Cózar, R., Villena, R., & Merino, J. M. (2018). The development of mental rotation abilities through robotics-based instruction: An experience mediated by gender. British Journal of Educational Technology, 50(6), 3198-3213. https://doi.org/10.1111/bjet.12726
Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Shibley, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 1-51. https://doi.org/10.1111/j.1529-1006.2007.00032.x
Harris, D., Lowrie, T., Logan, T., & Hegarty, M. (2021). Spatial reasoning, mathematics, and gender: Do spatial constructs differ in their contribution to performance? British Journal of Educational Psychology, 91(1), 409–441. https://doi.org/10.1111/bjep.12371
Hawes, Z., Gilligan-Lee, K., & Mix, K. (2022). Effects of spatial training on mathematics performance: A meta-analysis. Development Psychology, 58(1), 112-137. https://doi.org/10.1037/dev0001281
Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65, 373-398. https://doi.org/10.1146/annurev-psych-010213-115057
Hyde, J. S., Fennema, E., & Lamon, S. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107, 139–55. https://doi.org/10.1037/0033-2909.107.2.139
Johnson, T., Burgoyne, A., Mix, K., & Young, C. (2021). Spatial and mathematics skills: Similarities and differences related to age, SES, and gender. Cognition, 218(2), Artículo 104918. https://doi.org/10.1016/j.cognition.2021.104918
Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92(2), 137–172. https://doi.org/10.1037/0033-295X.92.2.137
Lauer, J. E., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537-565. https://doi.org/10.1037/bul0000191
Lindberg, S. M., Hyde, J. S., Petersen, J., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123-1135. https://doi.org/10.1037/a0021276
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. https://doi.org/10.2307/1130467
Liu, O. L., & Wilson, M. (2009). Gender differences and similarities in PISA 2003 mathematics: A comparison between the United States and Hong Kong. International Journal of Testing, 9(1), 20-40. https://doi.org/10.1080/15305050902733547
Maeda, Y., & Yoon, S. Y. (2016). Are gender differences in spatial ability real or an artifact? Evaluation of measurement invariance on the Revised PSVT. Journal of Psychoeducational Assessment, 34(4), 397-403. https://doi.org/10.1177/0734282915609843
Manger, T., & Eikeland, O. (1998). The effects of spatial visualization and students’ sex on mathematical achievement. British Journal of Psychology, 89, 17-25. https://doi.org/10.1111/j.2044-8295.1998.tb02670.x
Moè, A. (2021). Doubling mental rotation scores in high school students: Effects of motivational and strategic trainings. Learning and Instruction, 74, 101461. https://doi.org/10.1016/j.learninstruc.2021.101461
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. NCTM.
Niederle, M., & Vesterlud, L. (2010). Explaining the gender gap in math test scores: The role of competition. Journal of Economic Perspectives, 24(2), 129-44. https://doi.org/10.1257/jep.24.2.129
Núñez-Peña, M. I., & Aznar-Casanova, J. A. (2009). Rotación mental: Cómo la mente rota las imágenes hasta colocarlas en su posición normal. Ciencia Cognitiva: Revista Electrónica de Divulgación, 3(2), 58-61.
Peña, D., Contreras, M. J., Shih, P. C., & Santacreu, J. (2008). Solution strategies as possible explanations of individual and sex differences in a dynamic spatial task. Acta Psychological, 128(1), 1-14. https://doi.org/10.1016/j.actpsy.2007.09.005
Peters, M. (2005). Sex differences and the factor of time in solving Vandenberg and Kuse mental rotation problems. Brain and Cognition, 57(2), 176-184. https://doi.org/10.1016/j.bandc.2004.08.052
Petrusic, W. M., Varro, L., & Jamieson, D. G. (1978). Mental rotation validation of two spatial ability tests. Psychological Research, 40(2), 139-148. https://doi.org/10.1007/BF00308409
Pezaris, E., & Casey, M. B. (1991). Girls who use “masculine” problem-solving strategies on a spatial task: Proposed genetic and environmental factors. Brain and Cognition, 17(1), 1–22. https://doi.org/10.1016/0278-2626(91)90062D
Preckel, F., Goetz, T., Pekrun, R., & Kleine, M. (2008). Gender differences in gifted and average-ability students: Comparing girls’ and boys’ achievement, self-concept, interest, and motivation in mathematics. Gifted Child Quarterly, 52(2), 146-159. https://doi.org/10.1177/0016986208315834
Rabab’h, B., & Veloo, A. (2015). Spatial visualization as mediating between mathematics learning strategy and mathematics achievement among 8th grade students. International Education Studies. 8(5), 1-11. https://doi.org/10.5539/ies.v8n5p1
Ramírez, R., & Flores, P. (2017). Habilidades de visualización de estudiantes con talento matemático: comparativa entre los test psicométricos y las habilidades de visualización manifestadas en tareas geométricas. Enseñanza de las Ciencias, 35(2), 179-196. https://doi.org/10.5565/rev/ensciencias.2152
Ramírez-Uclés, R., Ramírez-Uclés, I., Flores, P., & Castro, E. (2013). Analysis of spatial visualization and intellectual capabilities in mathematically gifted students. Revista Mexicana de Psicología, 30, 24-31.
Ramírez-Uclés, I., & Ramírez Uclés, R. (2020). Gender differences in visuospatial abilities and complex mathematical problem solving. Frontiers Psychology, 11(191), 1-10. https://doi.org/10.3389/fpsyg.2020.00191
Reinking, A., & Martín, B. (2018). La brecha de género en los campos STEM: Teorías, movimientos e ideas para involucrar a las chicas en entornos STEM. Journal of New Approaches in Educational Research, 70(2), 160-166. https://doi.org/10.7821/naer.2018.7.271
Rivera, F.D. (2011). Towards a visually-oriented school mathematics curriculum. Springer. https://doi.org/10.1007/978-94-007-0014-7
Rodán, A., Montoro, P. R., Martínez-Molina, A., & Contreras, M. J. (2022). Effectiveness of spatial training in elementary and secondary school: everyone learns. Educación XX1, 25(1), 381-406. https://doi.org/10.5944/educXX1.30100
Scheiber, C., Reynolds, M. R., Hajovsky, D. B., & Kaufman, A. S. (2015). Gender differences in achievement in a large, nationally representative sample of children and adolescents. Psychology in the Schools, 52, 335-348. https://doi.org/doi:10.1002/pits.21827
Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35, 4-28. https://doi.org/10.1006/jesp.1998.1373
Steinmayr, R., & Spinath, B. (2008). Sex differences in school achievement: What are the roles of personality and achievement motivation? European Journal of Personality, 22, 185–209. http://dx.doi.org/10.1002/per.676
Stericker, A., & LeVesconte, S. (1982). Effect of brief training on sex-related differences in visual-spatial skill. Journal of Personality and Social Psychology, 43(5), 1018–1029. https://doi.org/10.1037/0022-3514.43.5.1018
Stewart, C., Root, M. M., Koriakin, T., Choi, D., Luria, S. R., Bray, M. A., Sassu, K. Maykel, C., O´Rourke, P., & Courville, T. (2017). Biological gender differences in students’ errors on mathematics achievement tests. Journal of Psychoeducational Assessment, 35(1-2), 47-56. https://doi.org/10.1177/0734282916669231
Stumpf, H. (1993). Performance factors and gender-related differences in spatial ability: Another assessment. Memory & Cognition, 21(6), 828-836. https://doi.org/10.3758/BF03202750
Thurstone, L. L., & Thurstone, T. G. (1943). Chicago tests of primary mental abilities: Manual of instructions. Science Research Association.
Thurstone, L. L., & Thurstone, T. G. (1976). P.M.A.: Aptitudes Mentales Primarias. TEA.
Voyer, D., Rodgers, M. A., & McCormick, P. A. (2004). Timing conditions and the magnitude of gender differences on the Mental Rotations Test. Memory & Cognition, 32(1), 72-82. https://doi.org/10.3758/BF03195821
Voyer, D., & Saunders, K. A. (2004). Gender differences on the mental rotations test: A factor analysis. Acta Psychologica, 117(1), 79-94. https://doi.org/10.1016/j.actpsy.2004.05.003
Voyer, D., & Voyer, S.D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174-1204. https://doi.org/10.1037/a0036620
Wach, F. S., Spengler, M., Gottschling, J., & Spinath, F. M. (2015). Sex differences in secondary school achievement — The contribution of self-perceived abilities and fear of failure. Learning and Instruction, 36, 104–112. http://dx.doi.org/10.1016/j.learninstruc.2015.01.005
Wu, H., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88, 465-492. https://doi.org/10.1002/sce.10126
Xu, X., Kim, E. S., & Lewis, J. E. (2016). Sex difference in spatial ability for college students and exploration of measurement invariance. Learning and Individual Differences, 45, 176-184. https://doi.org/10.1016/j.lindif.2015.11.015
Yarbrough, J. L., Cannon, L., Bergman, S., Kidder-Ashley, P., & McCane-Bowling, S. (2017). Let the data speak: Gender differences in math curriculum-based measurement. Journal of Psychoeducational Assessment, 35(6), 568-580. https://doi.org/10.1177/0734282916649122
Yoon, S. Y., & Mann, E. L. (2017). Exploring the spatial ability of undergraduate students: Association with gender, STEM majors, and gifted program membership. Gifted Child Quarterly, 61(4), 313-327. https://doi.org/10.1177/0016986217722614
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.