Eficacia del entrenamiento espacial en primaria y secundaria: todos aprenden

Autores/as

DOI:

https://doi.org/10.5944/educxx1.30100

Palabras clave:

rotación mental, entrenamiento, diferencias de género, ganancias de ejecución, estrategias educativas

Resumen

El procesamiento visoespacial es clave para lograr, entre otros, un rendimiento óptimo en actividades académicas. En el ámbito de la cognición espacial se ha encontrado que la práctica con tareas espaciales puede reducir la brecha de género en este tipo de razonamiento. Sin embargo, no siempre un aumento de las puntuaciones espaciales llega a compensar las diferencias que existen entre participantes con mayores y menores habilidades espaciales. De acuerdo con estudios previos sobre diferencias individuales y maleabilidad en cognición espacial, se necesitan estudios comparables en niños, niñas y adolescentes utilizando el mismo método de evaluación y entrenamiento. En este trabajo se analiza, en 39 estudiantes de Educación Primaria (estudio 1: 17 niños y 22 niñas) y en 21 de Educación Secundaria (estudio 2: 11 chicos y 10 chicas), el perfil de evolución a través de las diferentes sesiones de un entrenamiento en rotación mental (RM), así como el grado de mejora producido en función de su capacidad espacial de partida, analizando el factor género. En ambos grupos, se aplicó un entrenamiento espacial (Programa de Entrenamiento en Rotación Mental) durante tres sesiones consecutivas con una duración promedio de 35 minutos por sesión. Para ambos grupos de edad, los participantes con bajo nivel espacial se beneficiaron en una proporción similar que aquellos participantes con más recursos espaciales. Este resultado se replicó para ambos sexos. Esta investigación servirá como punto de partida para promover e implementar entrenamientos adaptativos y personalizados, y así poder ayudar a los que menos capacidades espaciales tienen. Este tipo de intervenciones ganarían en eficacia y podrían maximizar el potencial educativo en los grupos más desfavorecidos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(5-6), 327–344. https://doi.org/10.1007/BF00287729

Baniqued, P. L., Kranz, M. B., Voss, M. W., Lee, H., Cosman, J. D., Severson, J., & Kramer, A. F. (2014). Cognitive training with casual video games: points to consider. Frontiers in Psychology, 4, 1010. https://doi.org/10.3389/fpsyg.2013.01010

Bergner, S., & Neubauer, A. C. (2011). Sex and training differences in mental rotation: A behavioral and neurophysiological comparison of gifted achievers, gifted underachievers and average intelligent achievers. High Ability Studies, 22(2), 155–177. https://doi.org/10.1080/13598139.2011.628849

Cherney, I. D., Bersted, K., & Smetter, J. (2014). Training spatial skills in men and women. Perceptual & Motor Skills, 119(1), 82–99. https://doi.org/10.2466/23.25.PMS.119c12z0

Contreras, M. J., Escrig, R., Prieto, G., & Elosúa, M. R. (2018). Spatial Visualization ability improves with and without studying Technical Drawing. Cognitive Processing, 19(3), 387–397. https://doi.org/10.1007/s10339-018-0859-4

David, L. T. (2012). Training effects on mental rotation, spatial orientation and spatial visualisation depending on the initial level of spatial abilities. Procedia-Social and Behavioral Sciences, 33, 328–332. https://doi.org/10.1016/j.sbspro.2012.01.137

De Lisi, R., & Wolford, J. (2002). Improving children’s mental rotation accuracy with computer game playing. Journal of Genetic Psychology, 163(3), 272–283. https://doi.org/10.1080/00221320209598683

Ehrlich, S. B., Levine, S. C., & Goldin-Meadow, S. (2006). The importance of gesture in children’s spatial reasoning. Developmental Psychology, 42(6), 1259–1268. https://doi.org/10.1037/0012-1649.42.6.1259

Fernández-Méndez, L. M., Contreras, M. J., & Elosúa, M. R. (2020). Developmental differences between 1st and 3rd year of early childhood education (preschool) in mental rotation and its training. Psychological Research, 84(4), 1056-1064. https://doi.org/10.1007/s00426-018-1104-6

García‐Madruga, J. A., Elosúa, M. R., Gil, L., Gómez‐Veiga, I., Vila, J. Ó., Orjales, I.,..., & Duque, G. (2013). Reading comprehension and working memory's executive processes: An intervention study in primary school students. Reading Research Quarterly, 48(2), 155–174. https://doi.org/10.1002/rrq.44

Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children's spatial and numerical skills through a dynamic spatial approach to early geometry instruction: effects of a 32-week intervention. Cognition and Instruction, 35(3) 1–29. https://doi.org/10.1080/07370008.2017.1323902

Humphreys, L. G., Lubinski, D., & Yao, G. (1993). Utility of predicting group membership and the role of spatial visualization in becoming an engineer, physical scientist, or artist. Journal of Applied Psychology, 78(2), 250–261. https://doi.org/10.1037/0021-9010.78.2.250.

Karbach, J., Strobach, T., & Schubert, T. (2015). Adaptive working-memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychology, 21(3), 285–301. https://doi.org/10.1080/09297049.2014.899336

Linn, M. C., & Hyde, J. S. (1989). Gender, mathematics, and science. Educational Researcher, 18(8), 17–27. https://doi.org/10.3102/0013189X018008017

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. https://doi.org/10.1111/j.1467-8624.1985.tb00213.x

Lohman, D. F. (1996). Spatial ability and g. In I. Dennis & P. Tapsfield (Eds.), Human abilities: Their nature and measurement (pp. 97–116). Lawrence Erlbaum Associates, Inc.

Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170–186. https://doi.org/10.1111/bjep.12142

Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two-vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529–539. https://doi.org/10.1016/j.intell.2010.06.001

Rafi, A., Samsudin, K. A., & Said, C. S. (2008). Training in spatial visualization: The effects of training method and gender. Educational Technology & Society, 11(3), 127–140.

Raven, J., Court, J. H. & Raven, J. C. (1996). Standard Progressive Matrices. Psychologists Press.

Rodán, A., Contreras, M. J., Elosúa, M. R., & Gimeno, P. (2016). Experimental but not sex differences of a mental rotation training program on adolescents. Frontiers in Psychology, 7, 1050. https://doi.org/10.3389/fpsyg.2016.01050

Rodán, A., Gimeno, P., Elosúa, M. R., Montoro, P. R., & Contreras, M. J. (2019). Boys and girls gain in spatial, but not in mathematical ability after mental rotation training in primary education. Learning and Individual Differences, 70, 1-11. https://doi.org/10.1016/j.lindif.2019.01.001

Samsudin, K., Rafi, A., & Hanif, A. S. (2011). Training in mental rotation and spatial visualization and its impact on orthographic drawing performance. Journal of Educational Technology & Society, 14(1), 179–186.

Santamaría, P., Arribas, D., Pereña, J., & Seisdedos, N. (2005). EFAI, Evaluación Factorial de las Aptitudes Intelectuales. Departamento I+D TEA Ediciones.

Sanz de Acedo Lizarraga, M. L., & García Ganuza, J. M. (2003). Improvement of mental rotation in girls and boys. Sex Roles, 49(5–6), 277–286. https://doi.org/10.1023/A:1024656408294

Seisdedos, N. (1995). Manual de las Matrices Progresivas de Raven. Escalas CPM, SPM y APM. TEA Ediciones.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701

Sims, V. K., & Mayer, R. E. (2002). Domain specificity of spatial expertise: The case of video game players. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 16(1), 97–115. https://doi.org/10.1002/acp.759

Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 22(7), 996–1013. https://doi.org/10.1002/acp.1420

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446

Voyer, D., Rodgers, M. A., & McCormick, P. A. (2004). Timing conditions and the magnitude of gender differences on the Mental Rotations Test. Memory & Cognition, 32(1), 72–82. https://doi.org/10.3758/BF03195821

Voyer, D. & Jansen, P. (2016). Sex differences in chronometric mental rotation with human bodies. Psychological Research, 80(6), 974–984. https://doi.org/10.1007/s00426-015-0701-x

Wiedenbauer, G., & Jansen-Osmann, P. (2007). Mental rotation ability of children with spina bifida: what influence does manual rotation training have? Developmental Neuropsychology, 32(3), 809–824. https://doi.org/10.1080/87565640701539626

Wiedenbauer, G., & Jansen-Osmann, P. (2008). Manual training of mental rotation in children. Learning and Instruction, 18(1), 30–41. https://doi.org/10.1016/j.learninstruc.2006.09.009

Publicado

2022-01-03

Número

Sección

Estudios