A DIDACTIC ANALYSIS OF THE CLASSROOM PRACTICE IN THE TEACHING OF ANALOGUE CLOCK READING
DOI:
https://doi.org/10.5944/educxx1.23913Keywords:
Pedagogical practice, teaching, time, time measurement instrument, MTSK.Abstract
The construction of specialised mathematical knowledge for teaching time as a magnitude, is a complex activity that has not yet been studied in depth. In this article we present an approach to this problem from the classroom practice, describing and analysing some aspects of the contentand nature of the knowledge of two primary school teachers when working
on the measurement of time with their students.
We have adopted a qualitative methodology, and three moments of the
teachers’ interventions have been considered as a reflective action research cycle: for practice, in practice and on practice. To this end, planning and intervention sessions have been recorded for two primary school teachers and their actions have been interpreted in consideration of the analytical model Mathematics Teachers’ Specialised Knowledge (MTSK). This analysis has revealed that teachers are aware of the complexity of dealing with the reading and recording of time when they plan their intervention, and therefore they recognize the need to teach how to use the clock. Our first findings point out the need to provide the students with references for the units of time and to emphasize the functioning of the measuring instrument, questioning the usefulness of the analogue clock.
Downloads
References
Adler, J., Ball, D., Krainer, K, Lin F.L., & Novotna, J. (2005). Reflections on an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60, 359-381.
1007/s10649-005-5072-6
Andrews, P., Carrillo, J., y Climent, N. (2005). Proyecto “METE” (Mathematics Education Traditions of Europe): el foco matemático. En A. Maz, B. Gómez, y M. Torralbo (eds). Investigación en Educación Matemática. IX Simposio de la SEIEM (pp. 131-137). Córdoba: Universidad
de Córdoba.
Beltrán-Pellicer, P., y Giacomone, B. (2018). Desarrollando la competencia de análisis y valoración de la idoneidad didáctica en un curso de posgrado mediante la discusión de la de una experiencia de enseñanza. REDIMAT, Journal of Research in Mathematics Education, 7(2), 111-133. 10.17583/
redimat.2018.2516
Boulton-Lewis, G., Wilss, L., & Mutch, S. (1997). Analysis of primary school children’s abilities and strategies for reading and recording time from analogue and digital clocks. Mathematics Education Research Journal, 9, 136-151. 10.1007/bf03217308
Burny, E., Valcke, M., & Desoete, A. (2012). Clock reading: An underestimated topic in children with mathematics difficulties. Journal of learning disabilities, 45(4), 351-360. 10.1177/0022219411407773
Carrillo, J., Climent, N., Montes, M., Contreras, L.C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, A., Ribeiro, M., & Muñoz-Catalán, M. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. 10.1080/14794802.2018.1479981
Chamorro, M. (2003). Didáctica de las Matemáticas. Madrid: Pearson-Prentice Hall.
Charles, R., Caldwell, J., Cavanagh, M., Chancellor, D., Copley, J., Crown, W… (2014a). Matemática 3° Educación Básica. Texto del estudiante [Texto
traducido y editado para el Ministerio de Educación]. Santiago de Chile, Chile: Pearson.
Charles, R., Caldwell, J., Cavanagh, M., Chancellor, D., Copley, J., Crown, W… (2014b). Matemática 3° Educación Básica. Cuaderno de ejercicios 4 [Texto traducido y editado para el Ministerio de Educación]. Santiago de Chile, Chile: Pearson.
Clements, D., & Sarama, J. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York, USA: Routledge. 10.4324/9780203883785
Darling-Hammond, L., & Bransford, J. (2005). Preparing Teachers for a changing world. What teachers should learn and be able to do. San Francisco, USA: Jossey Bass. 10.5860/choice.43-1083
Earnest, D. (2017). Clock Work: How Tools for Time Mediate Problem Solving and Reveal Understanding. Journal for Research in Mathematics Education, 48 (2), 191-223. 10.5951/jresematheduc.48.2.0191
English, L.D., & Kirshner, D. (2016). Changing agendas in international research in mathematics education. In L.D. English, & D. Kirshner (Eds.), Handbook of international research in mathematics education (Third, pp. 3–18). New York, USA: Routledge. 10.4324/9780203448946
Erickson, F. (2006) Definition and analysis of data from videotape: some research procedures and their rationales. In J. Green, G. Camili, & P. Elmore (Eds.). Handbook of complementary methods in education research (pp. 177-191). Washington, D.C: American Educational Research Association. 10.4324/9780203874769
Fraisse, P. (1967). Psychologie du temps. Paris, France: PUF.
Friedman, W.J., & Laycock, F. (1989). Childrens Analog and Digital Clock Knowledge. Child Development, 60(2), 357-371. 10.2307/1130982
Friedman, W.J. (1990). About time: inventing the fourth dimension. Cambridge, MA, USA: MIT Press. Hargreaves, A., y Fullan, M. (2014).
Capital Profesional. Madrid: Morata. Hodkinson, A. (2004). Does the English Curriculum for History and its Schemes of Work effectively promote primary-aged children’s assimilation of the concepts of historical time? Some observations based on current research. Educational Research, 46(2), 99-117. 10.1080/0013188042000222403
Kamii, C., & Long, K. (2003). The measurement of time: Transitivity, unit iteration, and conservation of speed. In D.H. Clements & G. Bright (Eds.), Learning and teaching measurement (pp. 169–180). Reston, VA, USA: NCTM.
Killion, J., y Todnem, G. (1991) A process for personal theory building. Educational Leadership, 48 (6), 14-16.
König, J., Blömeke, S., y Kaiser, G. (2015). Early career mathematics teachers general pedagogical knowledge and skills: do teacher education, teaching experience, and working conditions make a difference? International Journal of Science and Mathematics Education, 13(2), 331–
10.1007/s10763-015-9618-5
Korthagen, F., Kessels, J., Koster, B., Lagerwerf, B., & Wubbels, T. (2001). Linking Practice and Theory. New York, USA: Routledge. 10.4324/9781410600523
Merriam, S.B. (1998). Qualitative research and case study applications in education. San Francisco, CA, USA: Jossey-Bass.
Monroe, E. E., Orme, M. P., & Erickson, L.B. (2002). Working cotton: toward an understanding of time. Teaching children mathematics, 8, 475-479.
NCTM (2000). Principles and standards for school mathematics. Reston, VA
USA: Author.
Piaget, J. (1971). La epistemología del tiempo. Buenos Aires, Argentina: El Ateneo.
Pirie, S. (1997). Chapter 11: Where Do We Go from Here? Journal for Research in Mathematics Education. Monograph, 9, 156-177. 10.2307/749953
Pizarro, N., Albarracín, L., y Gorgorió, N. (2018). Measurement estimation activities: The interpretation of Primary School teachers. Bolema: Boletim de Educação Matemática, 32(62), 1177-1197. 10.1590/1980-4415v32n62a21
Richie, D.M., & Bickhard, M.H. (1988). The ability to perceive duration: Its relation to the development of the logical concept of time. Developmental
Psychology, 24(3), 318-323. 10.1037//0012-1649.24.3.318
Russell, K.A., y Kamii, C. (2012). Children’s Judgments of Durations: A Modified Replication of Piaget’s Study. School Science and Mathematics, 112(8), 476-482. 10.1111/j.1949-8594.2012.00166.x
Sfard, A. (2005). What could be more practical than good research? On mutual relation between research and practice of mathematics education. Educational Studies in Mathematics, 58(3), 393–413.
1007/s10649-005-4818-5
Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Research, 15(2), 4-14. 10.2307/1175860
Shulman, L. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard Educational Review, 57(1), 1–22.
17763/haer.57.1.j463w79r56455411
Thomas, M., Clarke, D.M., McDonough, A., & Clarkson, P. (2016). Understanding time: A research based framework. In B. White, M. Chinnappan, & S. Trenholm (Eds.). Opening up mathematics education research. Proceedings of the 39th annual conference of the Mathematics Education Research Group of Australasia, (pp. 592-599). Adelaide, Australia: MERGA.
Van Steenbrugge, H., Valcke, M., & Desoete, A. (2010). Mathematics learning difficulties in primary education: teachers’ professional knowledge and the use of commercially available learning packages. Educational Studies, 36(1), 59-71. 10.1080/03055690903148639
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Educación XX1

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Educación XX1 is published under a Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0)
