Generative artificial intelligence and educational autonomy: historical metaphors and ethical principles for pedagogical transformation
DOI:
https://doi.org/10.5944/ried.45536Keywords:
educational technology, generative artificial intelligence, adaptive learning, learning assistant, ethics, instructional designAbstract
This article examines the integration of generative artificial intelligence in education from a critical, historical, and ethical perspective. It highlights growing concerns about the opacity of current artificial intelligence tools, particularly in learning systems. The study adopts a metaphor-based approach to explore how technological narratives influence the adoption of educational innovations. It reviews historical metaphors used to describe educational technologies, from Multivac and Matrix to the free software Bazaar and the App Store, and proposes new conceptual frameworks that may better reflect the current context in which artificial intelligence is entering the educational sphere. Based on this metaphorical analysis, the article outlines seven fundamental ethical principles for the safe adoption of generative artificial intelligence in education, focusing on privacy, pedagogical alignment, human oversight, and technological transparency. These principles are illustrated through a practical application: the LAMB (Learning Assistant Manager and Builder) environment, an open-source software framework that enables the ethical and contextualized design of artificial intelligence-based learning assistants. The article presents real-world cases of LAMB implementation in higher education, including a controlled experience with students that demonstrates significant improvements in student autonomy and pedagogical coherence. Finally, it emphasizes how LAMB embodies the proposed ethical principles and responds to the identified critical metaphors, offering a model for technology integration centered on teacher autonomy, alignment with institutional values and practices, and meaningful student learning that prioritizes pedagogical control over technological determinism.
Downloads
References
Adell-Segura, J., Castañeda, L., & Esteve-Mon, F. M. (2018). ¿Hacia la ubersidad? Conflictos y contradicciones de la universidad digital. RIED-Revista Iberoamericana de Educación a Distancia, 21(2), 51-68. https://doi.org/10.5944/ried.21.2.20669
Alier, M., García-Peñalvo, F. J., & Camba, J. D. (2024). Generative artificial intelligence in education: From deceptive to disruptive. International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 5-14. https://doi.org/10.9781/ijimai.2024.02.011
Alier, M., García-Peñalvo, F. J., Casañ, M. J., Pereira, J. A., & Llorens-Largo, F. (2024). Safe AI in Education Manifesto (v 0.4.0). https://manifesto.safeaieducation.org
Alier, M., Pereira, J., García-Peñalvo, F. J., Casañ, M. J., & Cabré, J. (2024). LAMB: An open-source software framework to create artificial-intelligence assistants deployed and integrated into learning-management systems. Computer Standards & Interfaces, 92, 103940. https://doi.org/10.1016/j.csi.2024.103940
Asimov, I. (1955-1976). Historias de Multivac [Serie de relatos]. Diversas publicaciones.
Bettayeb, A. M., Abu Talib, M., Sobhe Altayasinah, A. Z., & Dakalbab, F. (2024). Exploring the impact of ChatGPT: Conversational AI in education. Frontiers in Education, 9, 1379796. https://doi.org/10.3389/feduc.2024.1379796
Casañ, M. J., Alier, M., Pereira, J., & García-Peñalvo, F. J. (2024). Asistentes de aprendizaje basados en inteligencia artificial: Principios de seguridad y experiencias de implementación en educación superior. In M. Navarro-Granados, J. J. Sánchez Amate, P. Berbel Oller, & C. Rodríguez Jiménez (Eds.), Investigación y conocimientos en la educación actual (pp. 13-35). Dykinson.
Ceruzzi, P. E. (2003). A history of modern computing (2nd ed.). MIT Press.
Chan, C. K. Y., & Lee, K. K. W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8
Chen, O., Paas, F., & Sweller, J. (2023). A cognitive-load theory approach to defining and measuring task complexity through element interactivity. Educational Psychology Review, 35(2), 63. https://doi.org/10.1007/s10648-023-09782-w
Cyberspace Administration of China, National Development and Reform Commission, Ministry of Education, Ministry of Science and Technology, Ministry of Industry and Information Technology, Ministry of Public Security, & National Radio and Television Administration. (2023). Interim measures for the management of generative artificial intelligence services. Promulgadas el 13 de julio de 2023, en vigor desde el 15 de agosto de 2023. https://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm
Clarke, A. C. (1962). Profiles of the future: An inquiry into the limits of the possible. Harper & Row.
European Parliament. (2024, 13 de junio). Regulation (EU) 2024/1689 of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (published in OJ on 12.7.2024). https://data.europa.eu/eli/reg/2024/1689/oj
European Parliament, & Council of the European Union. (2016, 27 de abril). Regulation (EU) 2016/679 of the European Parliament and of the Council on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (OJ L 119, 4.5.2016, pp. 1-88). https://data.europa.eu/eli/reg/2016/679/oj
García-Peñalvo, F. J., Alier, M., Pereira, J., & Casañ, M. J. (2024). Safe, transparent, and ethical artificial intelligence: Keys to quality sustainable education (SDG 4). International Journal of Educational Research and Innovation, 22, 1-21. https://doi.org/10.46661/ijeri.11036
González-Geraldo, J. L., & Ortega-López, L. (2024). Can AI fool us? University students’ ability to detect ChatGPT. Education in the Knowledge Society, 25, e31760. https://doi.org/10.14201/eks.31760
Hofstadter, D. R., & Sander, E. (2018). La analogía: El motor del pensamiento (R. Musa, Trad.). Tusquets.
Hwang, G.-J., Tang, K.-Y., & Tu, Y.-F. (2024). How artificial intelligence supports nursing education: Profiling the roles, applications and trends of AI in nursing education research (1993–2020). Interactive Learning Environments, 32(1), 373-392. https://doi.org/10.1080/10494820.2022.2086579
IMS Global Learning Consortium. (2014). IMS Learning Tools Interoperability (LTI) implementation guide v2.0.
Jonas, H. (1984). The imperative of responsibility: In search of an ethics for the technological age. University of Chicago Press. https://doi.org/10.7208/chicago/9780226850337.001.0001
Kochmar, E., Vu, D. D., Belfer, R., Gupta, V., Serban, I. V., & Pineau, J. (2020). Automated personalized feedback improves learning gains in an intelligent tutoring system. In I. I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), Artificial Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco, July 6-10, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12164, pp. 140-146). Springer. https://doi.org/10.1007/978-3-030-52240-7_26
Llorens-Largo, F. (2019, 13 de febrero). Las tecnologías en la educación: Características deseables, efectos perversos. Universidad, sí. https://www.universidadsi.es/las-tecnologias-en-la-educacion-caracteristicas-deseables-efectos-perversos/
Mason, J. (2018). A critical metaphor analysis of educational technology research in the social studies. Contemporary Issues in Technology and Teacher Education, 18(3). https://citejournal.org/volume-18/issue-3-18/social-studies/a-critical-metaphor-analysis-of-educational-technology-research-in-the-social-studies/
Pereira, J., López-Gil, J. M., & Alier, M. (2025). The AI-powered classroom: LLMs as teacher assistants for enhanced software-engineering learning experiences. In R. Molina Carmona, C. J. Villagrá Arnedo, P. Compañ Rosique, F. García-Peñalvo, & A. García-Holgado (Eds.), Proceedings of TEEM 2024: The Twelfth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 115-124). Springer. (Lecture Notes in Educational Technology). https://doi.org/10.1007/978-981-96-5658-5_12
Pressman, R. S. (1991). Software engineering: A practitioner’s approach (3rd ed.). McGraw-Hill.
Raymond, E. S. (2001). The cathedral & the bazaar. O’Reilly.
Skinner, B. F. (1968). The technology of teaching. Appleton-Century-Crofts.
Stallman, R. M. (1985). The GNU manifesto. Free Software Foundation. https://www.gnu.org/gnu/manifesto.html
Thompson, B. (2025, 5 de mayo). Platform power is underrated. Stratechery. https://stratechery.com/2025/platform-power-is-underrated/
Tolkien, J. R. R. (1954-1955). The lord of the rings (Vols. 1-3). George Allen & Unwin.
Tonmoy, S. M. T. I., Mehedi Zaman, S. M., Jain, V., Rani, A., Rawte, V., Chadha, A., & Das, A. (2024). A comprehensive survey of hallucination-mitigation techniques in large language models. arXiv preprint arXiv:2401.01313. https://doi.org/10.48550/arXiv.2401.01313
Wachowski, L., & Wachowski, L. (1999). The Matrix [Película]. Warner Bros.
Weller, M. (2022). Metaphors of ed tech. Athabasca University Press. https://doi.org/10.15215/aupress/9781771993500.01
Willison, S. (2023). Prompt injection attacks: It’s only going to get worse. https://simonwillison.net/2023/Apr/25/prompt-injection
Wollny, S., Schneider, J., Di Mitri, D., Weidlich, J., Rittberger, M., & Drachsler, H. (2021). Are we there yet? A systematic literature review on chatbots in education. Frontiers in Artificial Intelligence, 4, 654924. https://doi.org/10.3389/frai.2021.654924
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Marc Alier-Forment, María José Casañ-Guerrero, Juan Antonio Pereira-Varela, Francisco José García-Peñalvo, Faraón Llorens-Largo

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles that are published in this journal are subject to the following terms:
1. The authors grant the exploitation rights of the work accepted for publication to RIED, guarantee to the journal the right to be the first publication of research understaken and permit the journal to distribute the work published under the license indicated in point 2.
2. The articles are published in the electronic edition of the journal under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. You can copy and redistribute the material in any medium or format, adapt, remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
3. Conditions for self-archiving. Authors are encouraged to disseminate electronically the OnlineFirst version (assessed version and accepted for publication) of its articles before publication, always with reference to its publication by RIED, favoring its circulation and dissemination earlier and with this a possible increase in its citation and reach among the academic community.

