Rol de la Inteligencia Artificial en la personalización de la educación a distancia: una revisión sistemática
DOI:
https://doi.org/10.5944/ried.28.1.41538Palabras clave:
aprendizaje adaptativo, educación a distancia, enseñanza individualizada, inteligencia artificial, revisión sistemáticaResumen
La inteligencia artificial (IA) representa una oportunidad significativa para la personalización y adaptación de sistemas educativos en modalidad virtual. Los avances en IA se han aplicado principalmente en sistemas de tutoría inteligentes, modelos predictivos y personalización de recursos y estrategias de aprendizaje. Esta investigación, que consiste en una revisión bibliográfica sistematizada, se propuso analizar estudios sobre el uso de la IA en la personalización de los procesos de aprendizaje en educación a distancia. Se identificaron temas y niveles educativos de las iniciativas, principales resultados, tipos de datos utilizados, técnicas de modelado más recurrentes y percepciones sobre la implementación de la IA en educación virtual. Para esta investigación, se consultaron las bases de datos WoS, Scopus, Dialnet y SciELO, seleccionando 65 documentos publicados entre 2018 y 2023. Se observó que la IA se integra fuera del proceso de aprendizaje en iniciativas de apoyo extracurricular diseñadas a partir de modelos predictivos de éxito académico, así como dentro del currículo a través del desarrollo de sistemas de recomendación adaptativos que recomiendan recursos, materiales y rutas personalizadas de aprendizaje y/o retroalimentan de manera personalizada el proceso. Los usos exitosos de la IA en la educación virtual tienen el potencial de ser adaptados, según el objetivo perseguido, a diversas disciplinas, incluyendo la atención a necesidades educativas especiales (NEE), y a grupos de estudiantes de distintos niveles del sistema educativo, con una mayor concentración en la educación superior.
Descargas
Citas
Adnan, M., Habib, A., Ashraf, J., & Mussadiq, S. (2019). Cloud-supported machine learning system for context-aware adaptive M-learning. Turkish Journal of Electrical Engineering & Computer Sciences, 27(4), 2798-2816. https://doi.org/10.3906/elk-1811-196
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749. https://doi.org/10.1109/TKDE.2005.99
Ahmadaliev, D., Xiaohui, C., Abduvohidov, M., Medatov, A., & Temirova, G. (2019). An adaptive activity sequencing instrument to enhance e-learning: an integrated application of overlay user model and mathematical programming on the Web. 2019 International Conference on Computer and Information Sciences (ICCIS), 1-4. https://doi.org/10.1109/ICCISci.2019.8716473
Al-Chalabi, H. K. M., & Ali Hussein, A. M. (2020). Pedagogical Approaches in Adaptive E-learning Systems. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1-4. https://doi.org/10.1109/ECAI50035.2020.9223194
Al-Chalabi, H. K. M., Ali Hussein, A. M., & Apoki, U. C. (2021). An Adaptive Learning System Based on Learner’s Knowledge Level. 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1-4. https://doi.org/10.1109/ECAI52376.2021.9515158
Alghamdi, A. A., Alanezi, M. A., & Khan, F. (2020). Design and Implementation of a Computer Aided Intelligent Examination System. International Journal of Emerging Technologies in Learning (IJET), 15(01), 30-44. https://doi.org/10.3991/ijet.v15i01.11102
Almohammadi, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A Survey of Artificial Intelligence Techniques Employed for Adaptive Educational Systems within E-Learning Platforms. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 47-64. https://doi.org/10.1515/jaiscr-2017-0004
Alsobhi, A. Y., & Alyoubi, K. H. (2019). Adaptation algorithms for selecting personalised learning experience based on learning style and dyslexia type. Data Technologies and Applications, 53(2), 189-200. https://doi.org/10.1108/DTA-10-2018-0092
Álvarez, S., Salazar, O. M., & Ovalle, D. A. (2018). Modelo basado en Agentes para la Detección de Fallas Cognitivas en Entornos de Aprendizaje Colaborativo. Información Tecnológica, 29(5), 289-298. https://doi.org/10.4067/S0718-07642018000500289
Álvarez, S., Salazar, O. M., & Ovalle, D. A. (2020). Modelo de juego serio colaborativo basado en agentes inteligentes para apoyar procesos virtuales de aprendizaje. Formación Universitaria, 13(5), 87-102. https://doi.org/10.4067/S0718-50062020000500087
Anderson, T. (2008). The Theory and Practice of Online Learning (2nd ed.). AU Press, Athabasca University.
Apoki, U. C., Ali Hussein, A. M., Al-Chalabi, H. K. M., Badica, C., & Mocanu, M. L. (2022). The Role of Pedagogical Agents in Personalised Adaptive Learning: A Review. Sustainability, 14, 6442. https://doi.org/10.3390/su14116442
Area-Moreira, M. (2021). La enseñanza remota de emergencia durante la COVID-19. Los desafíos postpandemia en la Educación Superior. Propuesta Educativa, 30(56), 57-70.
Ayala-Pazmiño, M., & Alvarado-Lucas, K. (2023). Integración de la Inteligencia Artificial en la Educación del Idioma Inglés en Ecuador: Un Camino para Mejorar los Resultados del Aprendizaje. 593 Digital Publisher CEIT, 8(3-1), 679-687. https://doi.org/10.33386/593dp.2023.3-1.1862
Azcorra Novelo, V. G., & Gallardo Córdova, K. E. (2022). Modelo de diseño de un instrumento para el aprendizaje y evaluación adaptativa de saberes algebraicos. Texto Livre, 15. https://doi.org/10.35699/1983-3652.2022.37264
Azzi, I., Jeghal, A., Radouane, A. yahyaouy, A., & Tairi, H. (2020). Approach Based on Artificial Neural Network to Improve Personalization in Adaptive E-Learning Systems. In V. Bhateja, S. Satapathy, & H. Satori (Eds.), Embedded Systems and Artificial Intelligence. Advances in Intelligent Systems and Computing (pp. 463-474). https://doi.org/10.1007/978-981-15-0947-6_44
Bennani, S., Maalel, A., Ben Ghezala, H., & Daouahi, A. (2022). Integrating Machine Learning into Learner Profiling for Adaptive and Gamified Learning System. In N. T. Nguyen, Y. Manolopoulos, R. Chbeir, A. Kozierkiewicz, & B. Trawiński (Eds.), Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science (pp. 65-71). https://doi.org/10.1007/978-3-031-16014-1_6
Bernacki, M. L., Greene, J. A., & Crompton, H. (2020). Mobile technology, learning, and achievement: Advances in understanding and measuring the role of mobile technology in education. Contemporary Educational Psychology, 60, 101827. https://doi.org/10.1016/j.cedpsych.2019.101827
Bodily, R., Kay, J., Aleven, V., Jivet, I., Davis, D., Xhakaj, F., & Verbert, K. (2018). Open learner models and learning analytics dashboards. Proceedings of the 8th International Conference on Learning Analytics and Knowledge, 41-50. https://doi.org/10.1145/3170358.3170409
Bogarín Vega, A. (2018). Mejora en el descubrimiento de modelos de minería de procesos en educación mediante agrupación de datos de interacción con la plataforma moodle [Tesis doctoral]. Universidad de Córdoba.
Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(43). https://doi.org/10.1186/s41239-023-00411-8
Chocarro, R., Cortiñas, M., & Marcos-Matás, G. (2021). Teachers’ attitudes towards chatbots in education: a technology acceptance model approach considering the effect of social language, bot proactiveness, and users’ characteristics. Educational Studies, 49(2), 295-313. https://doi.org/10.1080/03055698.2020.1850426
Choi, Y., & McClenen, C. (2020). Development of Adaptive Formative Assessment System Using Computerized Adaptive Testing and Dynamic Bayesian Networks. Applied Sciences, 10(22). https://doi.org/10.3390/app10228196
Codina, L. (2018). Revisiones bibliográficas sistematizadas: Procedimientos generales y Framework para Ciencias Humanas y Sociales. Departamento de Comunicación. Universitat Pompeu Fabra.
Codina, L. (2020). Cómo hacer revisiones bibliográficas tradicionales o sistemáticas utilizando bases de datos académicas. Revista ORL, 11(2), 139-153. https://doi.org/10.14201/orl.22977
Coman, C., Țîru, L. G., Meseșan-Schmitz, L., Stanciu, C., & Bularca, M. C. (2020). Online Teaching and Learning in Higher Education during the Coronavirus Pandemic: Students’ Perspective. Sustainability, 12(24), 10367. https://doi.org/10.3390/su122410367
Daghestani, L. F., Ibrahim, L. F., Al‐Towirgi, R. S., & Salman, H. A. (2020). Adapting gamified learning systems using educational data mining techniques. Computer Applications in Engineering Education, 28(3), 568-589. https://doi.org/10.1002/cae.22227
Davies, J. N., Verovko, M., Verovko, O., & Solomakha, I. (2021). Personalization of E-Learning Process Using AI-Powered Chatbot Integration. In S. Shkarlet, A. Morozov, & A. Palagin (Eds.), Mathematical Modeling and Simulation of Systems (MODS’2020). MODS 2020. Advances in Intelligent Systems and Computing (pp. 209-216). https://doi.org/10.1007/978-3-030-58124-4_20
Dewey, J. (1938). Experience and Education. Macmillan Company.
Dogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). The Use of Artificial Intelligence (AI) in Online Learning and Distance Education Processes: A Systematic Review of Empirical Studies. Applied Sciences, 13(5), 3056. https://doi.org/10.3390/app13053056
Emara, N., Ali, N., & Abu Khurma, O. (2023). Adaptive Learning Framework (Alef) in UAE Public Schools from the Parents’ Perspective. Social Sciences, 12(5), 297. https://doi.org/10.3390/socsci12050297
Embarak, O. H. (2022). Internet of Behaviour (IoB)-based AI models for personalized smart education systems. Procedia Computer Science, 203, 103-110. https://doi.org/10.1016/j.procs.2022.07.015
Ennouamani, S., & Mahani, Z. (2017). An overview of adaptive e-learning systems. 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), 342-347. https://doi.org/10.1109/INTELCIS.2017.8260060
Essa, S. G., Celik, T., & Human-Hendricks, N. E. (2023). Personalized Adaptive Learning Technologies Based on Machine Learning Techniques to Identify Learning Styles: A Systematic Literature Review. IEEE Access, 11, 48392-48409. https://doi.org/10.1109/ACCESS.2023.3276439
Faure, P. (1959). Pour une École de la Personne. Éditions du Seuil.
Finch, D., & Jacobs, K. (2012). Online Education: Best Practices to Promote Learning. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 546-550. https://doi.org/10.1177/1071181312561114
Gan, B., Zhang, C., Dong, Q., & Sun, W. (2021). Design of online course knowledge recommendation system based on improved learning diagnosis model. Journal of Physics: Conference Series, 1861(1). https://doi.org/10.1088/1742-6596/1861/1/012052
García Aretio, L. (2020). Bosque semántico: ¿educación/enseñanza/aprendizaje a distancia, virtual, en línea, digital, eLearning…? RIED-Revista Iberoamericana de Educación a Distancia, 23(1), 9-23. https://doi.org/10.5944/ried.23.1.25495
Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216
González Boticario, J., & Díaz Rozo, M. I. (2018). Aspectos clave de un Sistema Adaptativo que trata la implicación del estudiante en el Aprendizaje de la programación Recursiva mediante el tratamiento de aspectos afectivos y cognitivos. In M. del C. Ortega Navas (Ed.), Innovación educativa en la era digital (pp. 31-35).
Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
Haniya, S., Tzirides, A. O., Georgiadou, K., Montebello, M., Kalantzis, M., & Cope, B. (2020). Assessment Innovation in Higher Education by Integrating Learning Analytics. International Journal of Learning and Teaching, 6(1), 53-57. https://doi.org/10.18178/ijlt.6.1.53-57
Haq, I. U., Anwar, A., Basharat, I., & Sultan, K. (2020). Intelligent Tutoring Supported Collaborative Learning (ITSCL): A Hybrid Framework. International Journal of Advanced Computer Science and Applications, 11(8). https://doi.org/10.14569/IJACSA.2020.0110866
Hmedna, B., Mezouary, A. E., & Baz, O. (2020). A predictive model for the identification of learning styles in MOOC environments. Cluster Computing, 23(2), 1303-1328. https://doi.org/10.1007/s10586-019-02992-4
Hobert, S., & Meyer von Wolff, R. (2019). Say hello to your new automated tutor—a structured literature review on pedagogical conversational agents. 14th International Conference on Wirtschaftsinformatik, 301-314.
Ilić, M., Mikić, V., Kopanja, L., & Vesin, B. (2023). Intelligent techniques in e-learning: a literature review. Artificial Intelligence Review, 56(12), 14907-14953. https://doi.org/10.1007/s10462-023-10508-1
Ingkavara, T., Panjaburee, P., Srisawasdi, N., & Sajjapanroj, S. (2022). The use of a personalized learning approach to implementing self-regulated online learning. Computers and Education: Artificial Intelligence, 3. https://doi.org/10.1016/j.caeai.2022.100086
Jando, E., Meyliana, Hidayanto, A. N., Prabowo, H., Warnars, H. L. H. S., & Sasmoko. (2017). Personalized E-learning Model: A systematic literature review. 2017 International Conference on Information Management and Technology (ICIMTech), 238-243. https://doi.org/10.1109/ICIMTech.2017.8273544
Kaiss, W., Mansouri, K., & Poirier, F. (2023). Effectiveness of an Adaptive Learning Chatbot on Students’ Learning Outcomes Based on Learning Styles. International Journal of Emerging Technologies in Learning (IJET), 18(13), 250-261. https://doi.org/10.3991/ijet.v18i13.39329
Kaliwal, R. B., & Deshpande, S. L. (2021). Design of Intelligent E-Learning Assessment Framework Using Bayesian Belief Network. Journal of Engineering Education Transformations, 34, 651-658. https://doi.org/10.16920/jeet/2021/v34i0/157238
Kanaki, K., Kalogiannakis, M., Poulakis, E., & Politis, P. (2022). Employing Mobile Technologies to Investigate the Association Between Abstraction Skills and Performance in Environmental Studies in Early Primary School. International Journal of Interactive Mobile Technologies (IJIM), 16(6), 241-249. https://doi.org/10.3991/ijim.v16i06.28391
Kar, S. P., Das, A. K., Chatterjee, R., & Mandal, J. K. (2023). Assessment of learning parameters for students’ adaptability in online education using machine learning and explainable AI. Education and Information Technologies, 29(6), 7553-7568. https://doi.org/10.1007/s10639-023-12111-x
Kardan, A. A., Aziz, M., & Shahpasand, M. (2015). Adaptive systems: a content analysis on technical side for e-learning environments. Artificial Intelligence Review, 44(3), 365-391. https://doi.org/10.1007/s10462-015-9430-1
Kilpatrick, W. H. (1918). The Project Method. The use of the Purposeful Act in the Educative Process. Teachers College Record, 19(4), 319-335. https://doi.org/10.1177/016146811801900404
Kim, J., Jo, I.-H., & Park, Y. (2016). Effects of learning analytics dashboard: analyzing the relations among dashboard utilization, satisfaction, and learning achievement. Asia Pacific Education Review, 17(1), 13-24. https://doi.org/10.1007/s12564-015-9403-8
Krechetov, I., & Romanenko, V. (2020). Implementing the Adaptive Learning Techniques. Voprosy Obrazovaniya / Educational Studies Moscow, 2, 252-277. https://doi.org/10.17323/1814-9545-2020-2-252-277
Kushnarev, S., Kang, K., & Goyal, S. (2020). Assessing the Efficacy of Personalized Online Homework in a First-Year Engineering Multivariate Calculus Course. 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), 770-773. https://doi.org/10.1109/TALE48869.2020.9368417
Lee, C.-S., Wang, M.-H., Ciou, Z.-H., Chang, R.-P., Tsai, C.-H., Chen, S.-C., Huang, T.-X., Sato-Shimokawara, E., & Yamaguchi, T. (2021). Robotic Assistant Agent for Student and Machine Co-Learning on AI-FML Practice with AIoT Application. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-6. https://doi.org/10.1109/FUZZ45933.2021.9494417
Lhafra, F. Z., & Abdoun, O. (2023). Integration of evolutionary algorithm in an agent-oriented approach for an adaptive e-learning. International Journal of Electrical and Computer Engineering (IJECE), 13(2). https://doi.org/10.11591/ijece.v13i2.pp1964-1978
Li, K. C., & Wong, B. T.-M. (2021). Features and trends of personalised learning: a review of journal publications from 2001 to 2018. Interactive Learning Environments, 29(2), 182-195. https://doi.org/10.1080/10494820.2020.1811735
Lihua, B. (2021). Personalized adaptive online learning analysis model based on feature extraction and its implementation. Journal of Physics: Conference Series, 1982(1). https://doi.org/10.1088/1742-6596/1982/1/012180
Liu, H., Huang, K., & Jia, L. (2019). Personalized Learning Resource Recommendation Algorithm of Mobile Learning Terminal. 2019 15th International Conference on Computational Intelligence and Security (CIS), 137-141. https://doi.org/10.1109/CIS.2019.00037
López Jiménez, J. J. (2023). Sistema de retroalimentación inteligente basado en conocimiento común para la enseñanza virtual tutorizada [Tesis doctoral]. Universidad de Murcia.
López-Zambrano, J. (2021). Modelos genéricos para la predicción de las notas finales en cursos a partir de la información de interacción de los estudiantes con el sistema Moodle [Tesis doctoral]. Universidad de Córdoba.
Lu, T., Shen, X., Liu, H., Chen, B., Chen, L., & Yu, L. (2021). A Framework of AI-based Intelligent Adaptive Tutoring System. 2021 16th International Conference on Computer Science & Education (ICCSE), 726-731. https://doi.org/10.1109/ICCSE51940.2021.9569273
Ma, Y., Wang, L., Zhang, J., Liu, F., & Jiang, Q. (2023). A Personalized Learning Path Recommendation Method Incorporating Multi-Algorithm. Applied Sciences, 13(10), 5946. https://doi.org/10.3390/app13105946
Macías Villarreal, J. C., Molina-Montalvo, H. I., & Castro López, J. R. (2024). Adopción de las TIC como herramientas de enseñanza en una universidad pública derivado de la contingencia sanitaria covid-19. RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 14(28). https://doi.org/10.23913/ride.v14i28.1761
Mamcenko, J., & Kurilovas, E. (2017). On using learning analytics to personalise learning in virtual learning environments. European Conference on E-Learning, 353-361. https://doi.org/10.21125/edulearn.2017.0928
Mangaroska, K., Vesin, B., & Giannakos, M. (2019). Elo-Rating Method: Towards Adaptive Assessment in E-Learning. 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), 380-382. https://doi.org/10.1109/ICALT.2019.00116
Mangaroska, K., Vesin, B., Kostakos, V., Brusilovsky, P., & Giannakos, M. N. (2021). Architecting Analytics Across Multiple E-Learning Systems to Enhance Learning Design. IEEE Transactions on Learning Technologies, 14(2), 173-188. https://doi.org/10.1109/TLT.2021.3072159
Martín Coronel, E. O. (2022). Metodología para usar un sistema tutorial inteligente en la asignatura Inteligencia Artificial en Entornos Virtuales. Serie Científica De La Universidad De Las Ciencias Informáticas, 15(12), 148-164.
McCarthy, J. (2007). What is Artificial Intelligence? https://www-formal.stanford.edu/jmc/whatisai.pdf
Montessori, M. (1912). The Montessori Method. Frederick A. Stokes Company.
Montoya Pérez, D., & Mateus Santiago, S. P. (2018). Implementación de Redes Neuronales Artificiales en un Sistema Tutorial Inteligente orientado al aprendizaje del álgebra. Virtu@lmente, 6(1), 73-81. https://doi.org/10.21158/2357514x.v6.n1.2018.2106
Moore, M. G., & Kearsley, G. (2012). Distance Education: A Systems View of Online Learning (3rd ed.). Wadsworth Cengage Learning.
Murphy, H. E. (2017). Digitalizing paper-based exams: an assessment of programming grading assistant. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, 775-776. https://doi.org/10.1145/3017680.3022448
Muse, H., Bulathwela, S., & Yilmaz, E. (2023). Pre-Training With Scientific Text Improves Educational Question Generation. Proceedings of AAAI Conference on Artificial Intelligence 2023. https://doi.org/10.1609/aaai.v37i13.27004
OECD. (2018). Education at a Glance. OECD Publishing. https://doi.org/10.1787/eag-2018-en
Ogunkunle, O., & Qu, Y. (2020). A Data Mining based Optimization of Selecting Learning Material in an Intelligent Tutoring System for Advancing STEM Education. 2020 International Conference on Computational Science and Computational Intelligence (CSCI), 904-909. https://doi.org/10.1109/CSCI51800.2020.00169
Ojeda Castelo, J. J. (2022). Un modelo inteligente de interacción natural adaptativo basado en visión artificial [Tesis doctoral]. Universidad de Almería.
Özyurt, Ö., & Özyurt, H. (2015). Learning style based individualized adaptive e-learning environments: Content analysis of the articles published from 2005 to 2014. Computers in Human Behavior, 52, 349-358. https://doi.org/10.1016/j.chb.2015.06.020
Palomares Marín, M. del M. (2021). El español como lengua extranjera en aplicaciones adaptativas y multimedia: el caso de Duolingo [Tesis doctoral]. Universidad de Murcia.
Pane, J. F., Steiner, E. D., Baird, M. D., & Hamilton, L. S. (2015). Continued progress: Promising evidence on personalized learning. RAND Corporation. https://doi.org/10.7249/RR1365
Pardamean, B., Suparyanto, T., Cenggoro, T. W., Sudigyo, D., & Anugrahana, A. (2022). AI-Based Learning Style Prediction in Online Learning for Primary Education. IEEE Access, 10, 35725-35735. https://doi.org/10.1109/ACCESS.2022.3160177
Peng, H., Ma, S., & Spector, J. M. (2019). Personalized Adaptive Learning: An Emerging Pedagogical Approach Enabled by a Smart Learning Environment. In M. Chang (Ed.), Foundations and Trends in Smart Learning. Lecture Notes in Educational Technology (pp. 171-176). https://doi.org/10.1007/978-981-13-6908-7_24
Picciano, A. G. (2017). Theories and Frameworks for Online Education: Seeking an Integrated Model. Online Learning, 21(3), 166-190. https://doi.org/10.24059/olj.v21i3.1225
Rincon-Flores, E. G., Lopez-Camacho, E., Mena, J., & Olmos, O. (2022). Teaching through Learning Analytics: Predicting Student Learning Profiles in a Physics Course at a Higher Education Institution. International Journal of Interactive Multimedia and Artificial Intelligence, 7(7). https://doi.org/10.9781/ijimai.2022.01.005
Romero Alonso, R. E., & Anzola Vera, J. J. (2022). Modelo para la progresión académica de estudiantes online en Educación Superior. Cuadernos de Investigación Educativa, 13(1). https://doi.org/10.18861/cied.2022.13.1.3181
Rooein, D. (2019). Data-Driven Edu Chatbots. Companion Proceedings of the 2019 World Wide Web Conference, 46-49. https://doi.org/10.1145/3308560.3314191
Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Prentice Hall.
Saldaña, J. (2013). The Coding Manual for Qualitative Researchers (2nd ed.). SAGE Publications.
Saltos-Rivas, R., Novoa-Hernández, P., & Serrano Rodríguez, R. (2022). How Reliable and Valid are the Evaluations of Digital Competence in Higher Education: A Systematic Mapping Study. SAGE Open, 12(1), 1-14. https://doi.org/10.1177/21582440211068492
Sanchez-Santillan, M., Paule-Ruiz, M. P., Cerezo, R., & Alvarez-Garcia, V. (2016). MeL: Modelo de adaptación dinámica del proceso de aprendizaje en eLearning. Anales de Psicología, 32(1), 106-114. https://doi.org/10.6018/analesps.32.1.195071
Sapsai, I., Valencia Usme, Y. P., & Abke, J. (2023). Learning Analytics Dashboard for Educators: Proposed Project to Design with Pedagogical Background. Proceedings of the 5th European Conference on Software Engineering Education, 38-47. https://doi.org/10.1145/3593663.3593686
Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(54). https://doi.org/10.1186/s41239-021-00292-9
Sharma, K., Giannakos, M., & Dillenbourg, P. (2020). Eye-tracking and artificial intelligence to enhance motivation and learning. Smart Learning Environments, 7(1). https://doi.org/10.1186/s40561-020-00122-x
Sharma, K., Papamitsiou, Z., & Giannakos, M. (2019). Building pipelines for educational data using AI and multimodal analytics: A “grey‐box” approach. British Journal of Educational Technology, 50(6), 3004-3031. https://doi.org/10.1111/bjet.12854
Shvetsov, A. N., Sergushicheva, A. P., Andrianov, I. A., Kharina, M. V., & Zaslavskaya, O. Y. (2020). Student model implementation in the digital educational environment for IT specialists training. Journal of Physics: Conference Series, 1691(1). https://doi.org/10.1088/1742-6596/1691/1/012080
Silva, B., Reis, A., Sousa, J., Solteiro Pires, E. J., & Barroso, J. (2022). Enhancing higher education tutoring with artificial intelligence inference. 14th International Conference on Education and New Learning Technologies, 1609-1613. https://doi.org/10.21125/edulearn.2022.0426
Soui, M. (2021). Intelligent Personalized E-Learning Platform using Evolutionary Algorithms. 2021 8th International Conference on ICT & Accessibility (ICTA), 1-8. https://doi.org/10.1109/ICTA54582.2021.9809434
Staller, K. M. (2015). Qualitative analysis: The art of building bridging relationships. Qualitative Social Work, 14(2), 145-153. https://doi.org/10.1177/1473325015571210
Standen, P. J., Brown, D. J., Taheri, M., Galvez Trigo, M. J., Boulton, H., Burton, A., Hallewell, M. J., Lathe, J. G., Shopland, N., Blanco Gonzalez, M. A., Kwiatkowska, G. M., Milli, E., Cobello, S., Mazzucato, A., Traversi, M., & Hortal, E. (2020). An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities. British Journal of Educational Technology, 51(5), 1748-1765. https://doi.org/10.1111/bjet.13010
Talaghzi, J., Bennane, A., Himmi, M. M., Bellafkih, M., & Benomar, A. (2020). Online Adaptive Learning: A Review of Literature. Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications, 1-6. https://doi.org/10.1145/3419604.3419759
Tang, K.-Y., Chang, C.-Y., & Hwang, G.-J. (2021). Trends in artificial intelligence-supported e-learning: a systematic review and co-citation network analysis (1998–2019). Interactive Learning Environments, 31(4), 2134–2152. https://doi.org/10.1080/10494820.2021.1875001
Tenório, T., Isotani, S., Bittencourt, I. I., & Lu, Y. (2021). The State-of-the-Art on Collective Intelligence in Online Educational Technologies. IEEE Transactions on Learning Technologies, 14(2), 257-271. https://doi.org/10.1109/TLT.2021.3073559
Thomas, D. R., Gupta, S., Gatz, E., Tipper, C., & Koedinger, K. R. (2023). So You Want to Be a Tutor? Professional Development and Scenario-Based Training for Adult Tutors. In D. Guralnick, M. E. Auer, & A. Poce (Eds.), Creative Approaches to Technology-Enhanced Learning for the Workplace and Higher Education. TLIC 2023. Lecture Notes in Networks and Systems (pp. 537-547). https://doi.org/10.1007/978-3-031-41637-8_44
Traxler, J. (2018). Distance Learning—Predictions and Possibilities. Education Sciences, 8(1), 35. https://doi.org/10.3390/educsci8010035
Troussas, C., Krouska, A., & Virvou, M. (2019). Adaptive e-learning interactions using dynamic clustering of learners’ characteristics. 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), 1-7. https://doi.org/10.1109/IISA.2019.8900722
Tsai, S.-C., Chen, C.-H., Shiao, Y.-T., Ciou, J.-S., & Wu, T.-N. (2020). Precision education with statistical learning and deep learning: a case study in Taiwan. International Journal of Educational Technology in Higher Education, 17(12). https://doi.org/10.1186/s41239-020-00186-2
Vanitha, V., Krishnan, P., & Elakkiya, R. (2019). Collaborative optimization algorithm for learning path construction in E-learning. Computers & Electrical Engineering, 77, 325-338. https://doi.org/10.1016/j.compeleceng.2019.06.016
Vasilateanu, A., & Turcus, A. G. (2019). Chatbot for continuous mobile learning. 11th International Conference on Education and New Learning Technologies. https://doi.org/10.21125/edulearn.2019.0525
Veeramanickam, M. R. M., Dabade, M. S., Murty, S. R., Borhade, R. R., Barekar, S. S., Navarro, C., Roman-Concha, U., & Rodriguez, C. (2023). Smart education system to improve the learning system with CBR based recommendation system using IoT. Heliyon, 9(7), e17863. https://doi.org/10.1016/j.heliyon.2023.e17863
Ventura, M. D. (2022). A Self-adaptive Learning Music Composition Algorithm as Virtual Tutor. In I. Maglogiannis, L. Iliadis, J. Macintyre, & P. Cortez (Eds.), Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology (pp. 16-26). https://doi.org/10.1007/978-3-031-08333-4_2
Wang, S., Wu, H., Kim, J. H., & Andersen, E. (2019). Adaptive Learning Material Recommendation in Online Language Education. The 20th International Conference on Artificial Intelligence in Education (AIED), 298-302. https://doi.org/10.1007/978-3-030-23207-8_55
Wang, W., & Yang, H. (2020). A teaching method of deaf-mute based on artificial intelligence. 12th International Conference on Education and New Learning Technologies Online Conference, 4917-4923. https://doi.org/10.21125/edulearn.2020.1288
Wu, T.-T., Lee, H.-Y., Wang, W.-S., Lin, C.-J., & Huang, Y.-M. (2023). Leveraging computer vision for adaptive learning in STEM education: effect of engagement and self-efficacy. International Journal of Educational Technology in Higher Education, 20, 53. https://doi.org/10.1186/s41239-023-00422-5
Xiaogang, L. (2019). A Research on Distance Education System Based on Artificial Intelligence Technology. International Conference on Big Data and Artificial Intelligence (ICBDAI 2018).
Xie, H., Chu, H.-C., Hwang, G.-J., & Wang, C.-C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140. https://doi.org/10.1016/j.compedu.2019.103599
Yang, Y., Dolly, R. J., Alassafi, M. O., Slowik, A., & Alsaadi, F. E. (2023). Multi-source and heterogeneous online music education mechanism: an artificial intelligence-driven approach. Fractals, 31(06). https://doi.org/10.1142/S0218348X23401540
Yao, C.-B., & Wu, Y.-L. (2022). Intelligent and Interactive Chatbot Based on the Recommendation Mechanism to Reach Personalized Learning. International Journal of Information and Communication Technology Education, 18(1), 1-23. https://doi.org/10.4018/IJICTE.315596
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39-66. https://doi.org/10.1186/s41239-019-0171-0
Zine, O., Derouich, A., & Talbi, A. (2019). A Comparative Study of the Most Influential Learning Styles used in Adaptive Educational Environments. International Journal of Advanced Computer Science and Applications, 10(11), 520-528. https://doi.org/10.14569/IJACSA.2019.0101171