Percepciones de futuros docentes y pedagogos sobre uso responsable de la IA. Un instrumento de medida

Autores/as

DOI:

https://doi.org/10.5944/ried.28.2.43288

Palabras clave:

inteligencia artificial, docentes en formación, pedagogos en formación, instrumento psicométrico

Resumen

Este estudio presenta la validez y fiabilidad en la creación de un instrumento diseñado para evaluar las percepciones de docentes y pedagogos en formación hacia la integración de la Inteligencia Artificial en tareas relacionadas con su profesión docente, teniendo en cuenta factores intrínsecos como la actitud hacia su uso responsable, el nivel de creatividad en la creación de material didáctico con estas herramientas, el disfrute asociado en el uso de estas herramientas, y el nivel de ansiedad al enfrentarse al aprendizaje de esta tecnología emergente en su formación académica y su relevancia en su futuro mercado laboral. Fue utilizado un diseño no experimental ex post facto a través de encuestas con un muestreo no probabilístico por conveniencia, con un total de 548 docentes y pedagogos en formación de facultades de Ciencias de la Educación del territorio español. Para la elaboración del instrumento, se utilizaron medidas de fiabilidad y validez. Respecto a la fiabilidad, fueron utilizados los índices Alfa de Cronbach, Coeficiente Spearman-Brown, Dos Mitades de Guttman y fiabilidad compuesta. Respecto a la validez, se utilizaron la validez de comprensión, constructo, convergente y discriminante. Los resultados demostraron una fiabilidad altamente satisfactoria, y en términos de validez se observó un buen ajuste del modelo. La versión final del instrumento consta de 25 ítems clasificados en cinco factores latentes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Melchor Gómez-García, Universidad Autónoma de Madrid, UAM (España)

Profesor de Tecnología Educativa en la UAM, especialista en mobileLearning, redes sociales aplicadas a la educación y entornos digitales. Director del grupo DIMTE y coordinador de DIM-Madrid. Ha publicado sobre TIC y educación, dirige másteres y ha ocupado cargos de gestión en innovación educativa y docencia en red.

Julio Ruiz-Palmero, Universidad de Málaga, UMA (España)

Doctor en Tecnología Educativa por la Universidad de Málaga (Premio Extraordinario) y Catedrático en Didáctica y Organización Escolar. Vicerrector de Innovación Educativa en la UNIA, dirige el grupo de investigación Innoeduca y el Doctorado Interuniversitario en Tecnología Educativa. Ha coordinado proyectos I+D+I y es editor y revisor en revistas científicas.

Moussa Boumadan-Hamed, Universidad Autónoma de Madrid, UAM (España)

Doctor en Educación, Máster en TIC en Educación, Psicopedagogo y Maestro de Primaria. Profesor en la UAM, imparte docencia sobre TIC y educación en los grados de Maestro y en el Máster de TIC en Educación y Formación, donde coordina las Prácticas Externas.

Roberto Soto-Varela, Universidad de Valladolid, UVA (España)

Doctor en Educación por la UAM, es especialista en TIC y Didáctica de las Matemáticas. Ha participado en proyectos nacionales y europeos sobre Pensamiento Computacional, robótica y videojuegos educativos. Su investigación se centra en la formación docente y el uso de tecnologías para desarrollar competencias del siglo XXI en el alumnado.

Citas

Alemany Díaz, M. D. M., Vallés Lluch, A., Villanueva López, J. F. y García-Serra García, J. (2021). E-learning in "innovation, creativity and entrepreneurship": Exploring the new opportunities and challenges of technologies. Journal of Small Business Strategy (Online), 31(1), 39-50. https://doi.org/10.21125/inted.2020.0686

Alenezi, M. A. K., Mohamed, A. M. y Shaaban, T. S. (2023). Revolutionizing EFL special education: how ChatGPT is transforming the way teachers approach language learning. Innoeduca. International Journal of Technology and Educational Innovation, 9(2), 5-23. https://doi.org/10.24310/innoeduca.2023.v9i2.16774

Aler Tubella, A., Mora-Cantallops, M. y Nieves, J. C. (2024). How to teach responsible AI in Higher Education: challenges and opportunities. Ethics and Information Technology, 26(1), 1-14. https://doi.org/10.1007/s10676-023-09733-7

Asencio, E. N., García, E. J., Redondo, S. R. y Ruano, B. T. (2017). Fundamentos de la investigación y la innovación educativa. UNIR editorial.

Bellas, F., Guerreiro-Santalla, S., Naya, M. y Duro, R. J. (2023). AI curriculum for European high schools: An embedded intelligence approach. International Journal of Artificial Intelligence in Education, 33(2), 399-426. https://doi.org/10.1007/s40593-022-00315-0

Bentler, P. M. (1989). EQS structural equations program manual. BMDP Statistical Software.

Brandão, A., Pedro, L. y Zagalo, N. (2024). Teacher professional development for a future with generative artificial intelligence–an integrative literature review. Digital Education Review, (45), 151-157. https://doi.org/10.1344/der.2024.45.151-157

Cattell, R. B. (1966). The screen test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276. https://doi.org/10.1207/s15327906mbr0102_10

Chai, C. S., Yu, D., King, R. B. y Zhou, Y. (2024). Development and validation of the Artificial Intelligence Learning Intention Scale (AILIS) for University Students. SAGE Open, 14(2), 21582440241242188. https://doi.org/10.1177/21582440241242188

Cheng, L., Umapathy, K., Rehman, M., Ritzhaupt, A., Antonyan, K., Shidfar, P., Nichols, J., Lee, M. y Abramowitz, B. (2023). Designing, developing, and validating a measure of undergraduate students’ conceptions of artificial intelligence in education. Journal of Interactive Learning Research, 34(2), 275-311. https://doi.org/10.1037/t93665-000

Cheung, G. W. y Wang, C. (2017). Current approaches for assessing convergent and discriminant validity with SEM: issues and solutions. Academy of Management Proceedings, 2017(1), 12706. https://doi.org/10.5465/AMBPP.2017.12706abstract

Chounta, I. A., Bardone, E., Raudsep, A. y Pedaste, M. (2022). Exploring teachers’ perceptions of artificial intelligence as a tool to support their practice in Estonian K-12 education. International Journal of Artificial Intelligence in Education, 32(3), 725-755. https://doi.org/10.1007/s40593-021-00243-5

Csikszentmihalyi, M., Csikszentmihalyi, M., Abuhamdeh, S. y Nakamura, J. (2014). Flow. Flow and the foundations of positive psychology: The Collected Works of Mihaly Csikszentmihalyi, 227-238. https://doi.org/10.1007/978-94-017-9088-8_15

Espinoza-San Juan, J., Raby, M. D. y Sagredo-Lillo, E. (2024). Validación de un cuestionario sobre las percepciones y usos de la IA-Gen entre estudiantes de pedagogía. Revista Ibérica de Sistemas e Tecnologias de Informação, (E70), 574-585.

European Commission. (2019). Directorate-General for communications networks content and technology: Ethics guidelines for trustworthy AI. Publications Office. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C. y Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. https://doi.org/10.1037/1082-989X.4.3.272

Farrelly, T. y Baker, N. (2023). Generative artificial intelligence: Implications and considerations for higher education practice. Education Sciences, 13(11), 1109. https://doi.org/10.3390/educsci13111109

Fornell, C. y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104

Gocen, A. y Aydemir, F. (2020). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13-21. https://doi.org/10.2478/rem-2020-0003

González-Mayorga, H., Rodríguez-Esteban, A. y Vidal, J. (2024). El uso del modelo GPT de OpenAIpara el análisis de textos abiertos en investigación educativa [Using OpenAI’s GPT Model to Analyse Open Texts in Educational Research]. Pixel-Bit. Revista de Medios y Educación, 69, 227-253. https://doi.org/10.12795/pixelbit.102032

Grájeda, A., Burgos, J., Córdova, P. y Sanjinés, A. (2024). Assessing student-perceived impact of using artificial intelligence tools: Construction of a synthetic index of application in higher education. Cogent Education, 11(1), 2287917. https://doi.org/10.1080/2331186X.2023.2287917

Guillén-Gámez, F. D., Ruiz-Palmero, J. y García, M. G. (2023). Digital competence of teachers in the use of ICT for research work: development of an instrument from a PLS-SEM approach. Education and Information Technologies, 28(12), 16509-16529. https://doi.org/10.1007/s10639-023-11895-2

Guillén-Gámez, F. D., Tomczyk, Ł., Colomo-Magaña, E. y Mascia, M. L. (2024). Digital competence of Higher Education teachers in research work: validation of an explanatory and confirmatory model. Journal of E-Learning and Knowledge Society, 20(3), 1-12. https://doi.org/10.20368/1971-8829/1135963

Hair Jr, J. F., Black, W. C., Babin, B. J. y Anderson, R. E. (2010). Multivariate data analysis (pp. 785-785). Prentice Hall.

Hasanein, A. M. y Sobaih, A. E. E. (2023). Drivers and consequences of ChatGPT use in higher education: Key stakeholder perspectives. European Journal of Investigation in Health, Psychology and Education, 13(11), 2599-2614. https://doi.org/10.3390/ejihpe13110181

Heinzl, A., Buxmann, P., Wendt, O. y Weitzel, T. (Eds.). (2011). Theory-guided modeling and empiricism in information systems research. Springer Science & Business Media. https://doi.org/10.1007/978-3-7908-2781-1

Hopcan, S., Türkmen, G. y Polat, E. (2024). Exploring the artificial intelligence anxiety and machine learning attitudes of teacher candidates. Education and Information Technologies, 29(6), 7281-7301. https://doi.org/10.1007/s10639-023-12086-9

Hornberger, M., Bewersdorff, A. y Nerdel, C. (2023). What do university students know about Artificial Intelligence? Development and validation of an AI literacy test. Computers and Education: Artificial Intelligence, 5, 1-12. https://doi.org/10.1016/j.caeai.2023.100165

Hu, L. y Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118

Hwang, G. J. y Chen, N. S. (2023). Exploring the potential of generative artificial intelligence in education: applications, challenges, and future research directions. Journal of Educational Technology & Society, 26(2), 1-19. https://doi.org/10.30191/ETS.202304_26(2).0014

Jang, Y., Choi, S. y Kim, H. (2022). Development and validation of an instrument to measure undergraduate students’ attitudes toward the ethics of artificial intelligence (AT-EAI) and analysis of its difference by gender and experience of AI education. Education and Information Technologies, 27(8), 11635-11667. https://doi.org/10.1007/s10639-022-11086-5

Kaouni, M., Lakrami, F. y Labouidya, O. (2023). The design of an adaptive E-learning model based on Artificial Intelligence for enhancing online teaching. International Journal of Emerging Technologies in Learning (Online), 18(6), 202-219. https://doi.org/10.3991/ijet.v18i06.35839

Kim, S. W. y Lee, Y. (2022). The artificial intelligence literacy scale for middle school students. Journal of the Korea Society of Computer and Information, 27(3), 225-238. https://doi.org/10.9708/jksci.2022.27.03.225

Lambert, J. y Stevens, M. (2023). ChatGPT and generative AI technology: a mixed bag of concerns and new opportunities. Computers in the Schools, 1-25. https://doi.org/10.1080/07380569.2023.2256710

Marquina, M. C. G., Pinto-Villar, Y. M., Aranzamendi, J. A. M. y Gutiérrez, B. J. A. (2024). Adaptación y validación de un instrumento para medir las actitudes de los universitarios hacia la inteligencia artificial. Revista de Comunicación, 23(2), 125-142. https://doi.org/10.26441/RC23.2-2024-3493

Meroño, L., Calderón Luquin, A., Arias Estero, J. L. y Méndez Giménez, A. (2018). Diseño y validación del cuestionario de percepción del profesorado de Educación Primaria sobre el aprendizaje del alumnado basado en competencias (#ICOMpri2). Revista Complutense de Educación, 29(1), 215-235. https://doi.org/10.5209/RCED.52200

Mohamed, A. M., Shaaban, T. S., Bakry, S. H., Guillén-Gámez, F. D. y Strzelecki, A. (2024). Empowering the Faculty of Education Students: Applying AI’s Potential for Motivating and Enhancing Learning. Innovative Higher Education, 1-23. https://doi.org/10.1007/s10755-024-09747-z

Moneta, G. B. y Csikszentmihalyi, M. (1996). The effect of perceived challenges and skills on the quality of subjective experience. Journal of Personality, 64(2), 275-310. https://doi.org/10.1111/j.1467-6494.1996.tb00512.x

Morales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B. y Morales-García, M. (2024). Development and validation of a scale for dependence on artificial intelligence in university students. Frontiers in Education, 9, Article 1323898. https://doi.org/10.3389/feduc.2024.1323898

Nazaretsky, T., Cukurova, M. y Alexandron, G. (2022, March). An instrument for measuring teachers’ trust in AI-based educational technology. En LAK22: 12th International Learning Analytics and Knowledge conference (pp. 56-66). https://doi.org/10.1145/3506860.3506866

Ng, D. T. K., Leung, J. K. L., Chu, S. K. W. y Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041

Ng, D. T. K., Wu, W., Leung, J. K. L. y Chu, S. K. W. (2023). Artificial Intelligence (AI) literacy questionnaire with confirmatory factor analysis. En 2023 IEEE International Conference on Advanced Learning Technologies (ICALT) (pp. 233-235). IEEE. https://doi.org/10.1109/ICALT58122.2023.00074

Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook (pp. 97-146). https://doi.org/10.1007/978-1-4684-2490-4_4

Ouyang, F., Zheng, L. y Jiao, P. (2022). Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Education and Information Technologies, 27(6), 7893-7925. https://doi.org/10.1007/s10639-022-10925-9

Pérez, C. y Carretero-Dios, H. (2005). Normas para el desarrollo y revisión de estudios instrumentales. International Journal of Clinical and Health Psychology, 5(3), 521-551.

Pérez, E. R. y Medrano, L. A. (2010). Análisis factorial exploratorio: bases conceptuales y metodológicas. Revista Argentina de Ciencias del Comportamiento (RACC), 2(1), 58-66.

Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J. y Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability, 15(15), 11524. https://doi.org/10.3390/su151511524

Şahín Kölemen, C. (2024). Artificial intelligence technologies and ethics in educational processes: solution suggestions and results. Innoeduca. International Journal of Technology and Educational Innovation, 10(2), 1-18. https://doi.org/10.24310/ijtei.102.2024.19806

Saz-Pérez, F., Mir, B. P. y Carrió, A. L. (2024). Validación y estructura factorial de un cuestionario TPACK en el contexto de Inteligencia Artificial Generativa (IAG). Hachetetepé: Revista Científica de Educación y Comunicación, (28), 1-14. https://doi.org/10.25267/Hachetetepe.2024.i28.1101

Shaffer, D. R. y Kipp, K. (2010). Developmental Psychology: Childhood and Adolescence. Wadsworth.

Soriano-Alcantara, J. M., Guillén-Gámez, F. D. y Ruiz-Palmero, J. (2024). Exploring Digital Competencies: Validation and Reliability of an Instrument for the Educational Community and for all Educational Stages. Technology, Knowledge and Learning, 1-20. https://doi.org/10.1007/s10758-024-09741-6

Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association. https://doi.org/10.1037/10694-000

Tiwari, C. K., Bhat, M. A., Khan, S. T., Subramaniam, R. y Khan, M. A. I. (2024). What drives students toward ChatGPT? An investigation of the factors influencing adoption and usage of ChatGPT. Interactive Technology and Smart Education, 21(3), 333-355. https://doi.org/10.1108/ITSE-04-2023-0061

Üzüm, B., Elçiçek, M. y Pesen, A. (2024). Development of Teachers’ Perception Scale Regarding Artificial Intelligence Use in Education: Validity and Reliability Study. International Journal of Human–Computer Interaction, 1-12. https://doi.org/10.1080/10447318.2024.2385518

Uzumcu, O. y Acilmis, H. (2024). Do innovative teachers use AI-powered tools more interactively? a study in the context of diffusion of innovation theory. Technology, Knowledge and Learning, 29(2), 1109-1128. https://doi.org/10.1007/s10758-023-09687-1

Wang, F., Cheung, A. C., Chai, C. S. y Liu, J. (2024). Development and validation of the perceived interactivity of learner-AI interaction scale. Education and Information Technologies, 1-32. https://doi.org/10.1007/s10639-024-12963-x

Wang, Y. M., Wei, C. L., Lin, H. H., Wang, S. C. y Wang, Y. S. (2022). What drives students’ AI learning behavior: A perspective of AI anxiety. Interactive Learning Environments, 1-17. https://doi.org/10.1080/10494820.2022.2153147

Wang, Y. Y. y Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634. https://doi.org/10.1080/10494820.2019.1674887

Yilmaz, F. G. K., Yilmaz, R. y Ceylan, M. (2023). Generative artificial intelligence acceptance scale: A validity and reliability study. International Journal of Human–Computer Interaction, 1-13. https://doi.org/10.1080/10447318.2023.2288730

Yu, H. y Guo, Y. (2023, June). Generative artificial intelligence empowers educational reform: current status, issues, and prospects. Frontiers in Education, 8, Article 1183162. https://doi.org/10.3389/feduc.2023.1183162

Zhan, Y., Qiu, Z., Li, X. y Zhao, Z. (2024). Ease of Use or Fun Perception? Factors Affecting Retention of Newly Registered Mobile Game Players Based on Flow Theory and The Technology Acceptance Model. Journal of Internet Technology, 25(4), 497-505. https://doi.org/10.70003/160792642024072504001

Publicado

2025-04-03

Cómo citar

Gómez-García, M., Ruiz-Palmero, J., Boumadan-Hamed, M., & Soto-Varela, R. (2025). Percepciones de futuros docentes y pedagogos sobre uso responsable de la IA. Un instrumento de medida. RIED-Revista Iberoamericana De Educación a Distancia, 28(2). https://doi.org/10.5944/ried.28.2.43288

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.