Adopción del aprendizaje en línea en la educación superior de China: la perspectiva de los docentes
DOI:
https://doi.org/10.5944/ried.28.2.43514Palabras clave:
aprendizaje en línea, instituciones de educación superior, UTAUT, TAM, ChinaResumen
El sistema de educación superior ha experimentado profundos cambios a nivel global en la era post-COVID-19. Los avances en ciencia y tecnología, especialmente en las TIC, han ejercido una influencia considerable en este ámbito. La tecnología educativa ha cobrado relevancia, y la investigación sobre el aprendizaje en línea es esencial para explorar esta nueva frontera. Este estudio analiza los factores que influyen en la adopción del aprendizaje en línea en la educación superior de China. Se utilizó una encuesta estructurada para recopilar datos de 280 docentes de diversas instituciones públicas, con el fin de evaluar el impacto de estos factores en la integración de tecnologías de aprendizaje en línea. Se consideraron los docentes de instituciones públicas, ya que presentan mayores niveles de angustia financiera, ansiedad y depresión en comparación con los de instituciones privadas, lo que limita el acceso a recursos en línea, genera problemas de compatibilidad y afecta la autoeficacia. Los hallazgos revelaron que la falta de infraestructura TIC y apoyo técnico, junto con una formación limitada en aprendizaje en línea, representan barreras clave para su implementación. Además, la influencia social, la utilidad percibida y la facilidad de uso desempeñan un papel crucial en la intención de adopción. Este estudio ofrece información valiosa para los responsables de políticas y administradores educativos que buscan fortalecer los entornos de aprendizaje en línea y superar los desafíos del sector de educación superior en China.
Descargas
Citas
Aguti, B., Walters, R. y Wills, G. (2013). A framework for evaluating the effectiveness of blended e-learning within universities. En Society for Information Technology & Teacher Education International Conference (pp. 1982-1987). Association for the Advancement of Computing in Education (AACE).
Al Rawashdeh, A. Z., Mohammed, E. Y., Al Arab, A. R., Alara, M. y Al-Rawashdeh, B. (2021). Advantages and disadvantages of using e-learning in university education: Analyzing students' perspectives. Electronic Journal of E-learning, 19(3), 107-117. https://doi.org/10.34190/ejel.19.3.2168
Al-Ammari, J. y Hamad, S. (2008, April). Factors influencing the adoption of e-learning at UOB. En 2nd International Conference and Exhibition for Zain E-learning Center (pp. 28-30). University of Bahrain.
Al-Azawei, A., Parslow, P. y Lundqvist, K. (2016). Barriers and opportunities of e-learning implementation in Iraq: A case of public universities. The International Review of Research in Open and Distributed Learning, 17(5). https://doi.org/10.19173/irrodl.v17i5.2501
Al-Fraihat, D., Joy, M. y Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67-86. https://doi.org/10.1016/j.chb.2019.08.004
Alhabeeb, A. y Rowley, J. (2018). E-learning critical success factors: Comparing perspectives from academic staff and students. Computers & Education, 127, 1-12. https://doi.org/10.1016/j.compedu.2018.08.007
Alharbi, A. y Drew, S. (2014). Factors influencing the adoption of e-learning systems in Saudi Arabia. International Journal of Education and Information Technologies, 8(3), 135-141.
Alqahtani, A. Y. y Rajkhan, A. A. (2020). E-learning critical success factors during the covid-19 pandemic: A comprehensive analysis of e-learning managerial perspectives. Education Sciences, 10(9), 216. https://doi.org/10.3390/educsci10090216
Andrews, R. y Haythornthwaite, C. (2007). Introduction to e-learning research. The SAGE handbook of e-learning research, 10(9781848607859), n1. https://doi.org/10.4135/9781848607859.n1
Assareh, A. y Bidokht, M. H. (2011). Barriers to e-teaching and e-learning. Procedia Computer Science, 3, 791-795. https://doi.org/10.1016/j.procs.2010.12.129
Baig, M. I., Shuib, L. y Yadegaridehkordi, E. (2022). E-learning adoption in higher education: A review. Information Development, 38(4), 570-588. https://doi.org/10.1177/02666669211008224
Bakia, M., Shear, L., Toyama, Y. y Lasseter, A. (2012). Understanding the impacts of technology on education. U.S. Department of Education, Office of Educational Technology.
Becker, K., Fleming, J. y Keijsers, W. (2012). E‐learning: ageing workforce versus technology‐savvy generation. Education + Training, 54(5), 385-400. https://doi.org/10.1108/00400911211244687
Birch, D. y Burnett, B. (2009). Bringing academics on board: Encouraging institution-wide diffusion of e-learning environments. Australasian Journal of Educational Technology, 25(1). https://doi.org/10.14742/ajet.1184
Bsharat, T. R., Behak, F. y Ismail, I. A. (2023). A guide to e-learning: When the entire world was caught in the center of a storm, technology played a critical role. En Implementing Rapid E-Learning Through Interactive Materials Development (pp. 1-10). IGI Global. https://doi.org/10.4018/978-1-6684-4940-0.ch001
Callinan, J. (2020). Barriers and facilitators to e-learning in palliative care. International Journal of Palliative Nursing, 26(8), 394-402. https://doi.org/10.12968/ijpn.2020.26.8.394
Chang, C. L. y Fang, M. (2020, June). E-Learning and online instructions of higher education during the 2019 novel coronavirus diseases (COVID-19) epidemic. Journal of Physics: Conference Series, 1574(1), p. 012166. IOP Publishing. https://doi.org/10.1088/1742-6596/1574/1/012166
Chatti, H. y Hadoussa, S. (2021). Factors affecting the adoption of e-learning technology by students during the COVID-19 quarantine period: The application of the UTAUT model. Engineering, Technology & Applied Science Research, 11(2), 6993-7000. https://doi.org/10.48084/etasr.3985
Chuang, M. Y., Chen, C. J. y Lin, M. J. J. (2016). The impact of social capital on competitive advantage: The mediating effects of collective learning and absorptive capacity. Management Decision, 54(6), 1443-1463. https://doi.org/10.1108/MD-11-2015-0485
Culnan, M. J. (2016). Information Systems Research: Current Status and Future Directions. Journal of Management Information Systems, 33(4), 928-949.
Daneji, A. A., Ayub, A. F. M. y Khambari, M. N. M. (2019). The effects of perceived usefulness, confirmation and satisfaction on continuance intention in using massive open online course (MOOC). Knowledge Management & E-Learning, 11(2), 201-214. https://doi.org/10.34105/j.kmel.2019.11.010
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
Duan, Y., He, Q., Feng, W., Li, D. y Fu, Z. (2010). A study on e-learning take-up intention from an innovation adoption perspective: A case in China. Computers & Education, 55(1), 237-246. https://doi.org/10.1016/j.compedu.2010.01.009
Ennouamani, S. y Mahani, Z. (2017, December). An overview of adaptive e-learning systems. En 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 342-347). IEEE. https://doi.org/10.1109/INTELCIS.2017.8260060
Ertmer, P. A. y Ottenbreit-Leftwich, A. T. (2010). Teachers' beliefs and technology integration practices: A developmental approach. Technology, Pedagogy and Education, 19(3), 319-336.
Etikan, I., Musa, S. A. y Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11
Fan, W. y Yi, S. (2012). Barriers to E-learning adoption in China's traditional higher education institutions: An exploratory study at the institutional level. En Proceedings of the IADIS International Conference e-Learning. IADIS Press.
Fishbein, M. y Ajzen, I. (1977). Belief, attitude, intention, and behaviour: An introduction to theory and research. Addison-Wesley
Gupta, S. B. y Gupta, M. (2020). Technology and E-learning in higher education. Technology, 29(4), 1320-1325.
Huang, H. y Liu, G. (2024). Evaluating students' behavioral intention and system usability of augmented reality-aided distance design learning during the COVID-19 pandemic. Universal Access in the Information Society, 23(3), 1217-1231. https://doi.org/10.1007/s10209-022-00920-9
Hwang, G. J. y Chang, H. F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023-1031. https://doi.org/10.1016/j.compedu.2010.12.002
Islam, N., Beer, M. y Slack, F. (2015). E-learning challenges faced by academics in higher education. Journal of Education and Training Studies, 3(5), 102-112. https://doi.org/10.11114/jets.v3i5.947
Janelli, M. (2018). E-learning in theory, practice, and research. Education Issues, 4(eng), 81-98. https://doi.org/10.17323/1814-9545-2018-4-81-98
Jiang, H., Islam, A. A., Gu, X., Spector, J. M. y Chen, S. (2022). Technology-enabled e-learning platforms in Chinese higher education during the pandemic age of COVID-19. Sage Open, 12(2), 21582440221095085. https://doi.org/10.1177/21582440221095085
Jin, Y. Q., Lin, C. L., Zhao, Q., Yu, S. W. y Su, Y. S. (2021). A study on traditional teaching method transferring to E-learning under the COVID-19 pandemic: From Chinese students' perspectives. Frontiers in Psychology, 12, 632787. https://doi.org/10.3389/fpsyg.2021.632787
Kanuka, H. (2008). Understanding e-learning technologies-in-practice. En T. Anderson (Ed.), The theory and practice of online learning (2ª ed., pp. 91-118). Athabasca University Press. https://doi.org/10.15215/aupress/9781897425084.006
Khaldi, A., Bouzidi, R. y Nader, F. (2023). Gamification of e-learning in higher education: a systematic literature review. Smart Learning Environments, 10(1), 10. https://doi.org/10.1186/s40561-023-00227-z
Kline, R. B. (2023). Principles and practice of structural equation modelling. Guilford Publications.
Lee, B. C., Yoon, J. O. y Lee, I. (2009). Learners' acceptance of e-learning in South Korea: Theories and results. Computers & Education, 53(4), 1320-1329. https://doi.org/10.1016/j.compedu.2009.06.014
Levine, A. y Sun, J. C. (2002). Barriers to Distance Education. American Council on Education, EDUCAUSE.
Li, J. y Xue, E. (2021). Mapping the education policy of foreign faculty for creating world-class universities in China: Advantage, conflict, and ambiguity. Educational Philosophy and Theory, 53(14), 1454-1463. https://doi.org/10.1080/00131857.2020.1863213
MacKeogh, K. y Fox, S. (2009). Strategies for Embedding e Learning in Traditional Universities: Drivers and Barriers. Electronic Journal of E-learning, 7(2), pp147-154.
Madni, S. H. H., Ali, J., Husnain, H. A., Masum, M. H., Mustafa, S., Shuja, J., Maray, M. y Hosseini, S. (2022). Factors influencing the adoption of IoT for E-learning in higher educational institutes in developing countries. Frontiers in Psychology, 13, 915596. https://doi.org/10.3389/fpsyg.2022.915596
Mashhour, A., & Saleh, Z. (2010). Evaluating E-learning in Jordanian institutions: why is it lagging? Quarterly Review of Distance Education, 11(4), 269.
McConnell, D. (2018). E-learning in Chinese higher education: the view from inside. Higher Education, 75(6), 1031-1045. https://doi.org/10.1007/s10734-017-0183-4
Mensah, I. K., Zeng, G., Luo, C., Lu, M. y Xiao, Z. W. (2022). Exploring the E-Learning Adoption Intentions of College Students Amidst the COVID-19 Epidemic Outbreak in China. Sage Open, 12(2), 21582440221086629. https://doi.org/10.1177/21582440221086629
Milićević, V., Denić, N., Milićević, Z., Arsić, L., Spasić-Stojković, M., Petković, D., Stojanović, J., Krkic, M., Sokolov Milovančević, N. y Jovanović, A. (2021). E-learning perspectives in higher education institutions. Technological Forecasting and Social Change, 166, 120618. https://doi.org/10.1016/j.techfore.2021.120618
Moore, R. L. y Fodrey, B. P. (2018). Distance education and technology infrastructure: Strategies and opportunities. Leading and managing e-learning: What the e-learning leader needs to know, 87-100. https://doi.org/10.1007/978-3-319-61780-0_7
Nawaz, A. (2013). Using e-learning as a tool for 'education for all' in developing states. International Journal of Science and Technology Education Research, 4(3), 38-46.
Nchunge, D. M., Sakwa, M. y Mwangi, W. (2013). Assessment of ICT infrastructure on ICT adoption in educational institutions: a descriptive survey of secondary schools in Kiambu county Kenya. Journal of Computer Science & Information Technology, 1(1), 32-45.
Osadcha, K. P., Osadchyi, V. V. y Spirin, O. (2021). Current state and development trends of e-learning in China. Information Technologies and Learning Tools, 85(5), 208-227. https://doi.org/10.33407/itlt.v85i5.4399
Ouadoud, M., Rida, N. y Chafiq, T. (2021). Overview of E-learning Platforms for Teaching and Learning. Int. J. Recent Contributions Eng. Sci. IT, 9(1), 50-70. https://doi.org/10.3991/ijes.v9i1.21111
Rahmi, B. A. K. I., Birgoren, B. y Aktepe, A. (2018). A meta-analysis of factors affecting perceived usefulness and perceived ease of use in the adoption of e-learning systems. Turkish Online Journal of Distance Education, 19(4), 4-42. https://doi.org/10.17718/tojde.471649
Raykov, T. y Grayson, D. (2003). A test for change of composite reliability in scale development. Multivariate Behavioral Research, 38(2), 143-159. https://doi.org/10.1207/S15327906MBR3802_1
Rogers, M. S. (2019, November). Creating an Effective e-Learning Culture: The Pedagogical Variation Model (PVM) for Online Learning and Teaching. En eLearn: World Conference on EdTech (pp. 337-347). Association for the Advancement of Computing in Education (AACE).
Salamat, L., Ahmad, G., Bakht, M. I. y Saifi, I. L. (2018). Effects of E-Learning on Students' Academic learning at the university Level. Asian Innovative Journal of Social Sciences and Humanities, 2(2).
Sandars, J. (2021). Cost-effective e-learning in medical education. En Cost-effectiveness in medical education (pp. 40-47). CRC Press. https://doi.org/10.1201/9780429091285-6
Sandler, A. (2021). Against Standard Deviation as a Quality Control Maxim in Anthropometry. Econ Journal Watch, 18(1).
Semlambo, A. A., Sengati, F. y Angalia, B. (2022). Factors affecting the adoption of e-learning systems in public higher learning institutions in Tanzania: A Case of Institute of Accountancy Arusha (IAA). Journal of Computer and Communications, 10(9), 113-126. https://doi.org/10.4236/jcc.2022.109008
Serrano, D. R., Dea‐Ayuela, M. A., Gonzalez‐Burgos, E., Serrano‐Gil, A. y Lalatsa, A. (2019). Technology‐enhanced learning in higher education: How to enhance student engagement through blended learning. European Journal of Education, 54(2), 273-286. https://doi.org/10.1111/ejed.12330
Shee, D. Y. y Wang, Y. S. (2008). Multi-criteria evaluation of the web-based e-learning system: A methodology based on learner satisfaction and its applications. Computers & education, 50(3), 894-905. https://doi.org/10.1016/j.compedu.2006.09.005
Siron, Y., Wibowo, A. y Narmaditya, B. S. (2020). Factors affecting the adoption of e-learning in Indonesia: Lesson from Covid-19. JOTSE: Journal of Technology and Science Education, 10(2), 282-295. https://doi.org/10.3926/jotse.1025
Surry, D. W. y Ensminger, D. C. (2006). Facilitating the Use of Web-Based Learning by Higher Education Faculty. Online Submission.
Turnbull, D., Chugh, R. y Luck, J. (2021). Transitioning to E-Learning during the COVID-19 pandemic: How have Higher Education Institutions responded to the challenge? Education and Information Technologies, 26(5), 6401-6419. https://doi.org/10.1007/s10639-021-10633-w
Venkatesh, V. y Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-481. https://doi.org/10.1111/j.1540-5915.1996.tb01822.x
Venkatesh, V. y Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B. y Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. https://doi.org/10.2307/30036540
Wang, Y., Liu, X. y Zhang, Z. (2018). An overview of e-learning in China: History, challenges and opportunities. Research in Comparative and International Education, 13(1), 195-210. https://doi.org/10.1177/1745499918763421
Wejnert, B. (2002). Integrating models of diffusion of innovations: A conceptual framework. Annual Review of Sociology, 28(1), 297-326. https://doi.org/10.1146/annurev.soc.28.110601.141051
Wu, J. (2024). E-learning management systems in higher education: Features of the application at a Chinese vs. European university. Journal of the Knowledge Economy, 1-31. https://doi.org/10.1007/s13132-024-02159-6
Yakubu, M. N. y Dasuki, S. I. (2019). Factors affecting the adoption of e-learning technologies among higher education students in Nigeria: A structural equation modelling approach. Information Development, 35(3), 492-502. https://doi.org/10.1177/0266666918765907
Zhong, J., Xie, H. y Wang, F.L. (2019). The research trends in recommender systems for e-learning: A systematic review of SSCI journal articles from 2014 to 2018. Asian Association of Open Universities Journal, 14(1), pp.12-27. https://doi.org/10.1108/AAOUJ-03-2019-0015

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Chongya Ma, Farrukh Ijaz, Muhammad Fareed, Hood Laeeq

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las obras que se publican en esta revista están sujetos a los siguientes términos:
1. Los autores ceden de forma no exclusiva los derechos de explotación de los trabajos aceptados para su publicación en "RIED. Revista Iberoamericana de Educación a Distancia," y garantizan a la revista el derecho a ser la primera en publicar ese trabajo, igualmente, permiten a la revista distribuir obras publicadas bajo la licencia indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0). Se permite copiar y redistribuir el material en cualquier medio o formato, adaptar, remezclar, transformar y crear a partir del material para cualquier finalidad, incluso comercial. Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios.
3. Condiciones de auto-archivo. Se permite e incentiva a los autores a difundir electrónicamente la versión OnlineFirst (versión evaluada y aceptada para su publicación) de su obra antes de su publicación definitiva, siempre con referencia a su publicación en RIED, ya que favorece su circulación y difusión antes y así propiciar un posible aumento de su citación y alcance entre la comunidad académica. Color RoMEO: verde.