Challenges of generative Artificial Intelligence in higher education: promoting its critical use among students
DOI:
https://doi.org/10.5944/ried.28.2.43535Keywords:
artificial intelligence, university studies, ethics, critical senseAbstract
The widespread emergence of generative artificial intelligence (GenAI) presents significant challenges for its integration into Higher Education. Understanding AIG, its possibilities, and its risks must go hand in hand with a critical reflection on the regulatory and ethical issues it raises. It is essential for students to develop informed perspectives that allow them to use GenAI responsibly. This article presents the results of incorporating a specific learning resource on GenAI, along with a shared ethical discussion, into the curriculum of an online university course. The study analyzes both quantitative and qualitative data collected from over 900 university students through an online questionnaire featuring open and closed questions. Two groups were compared: one that did not have access to the learning resource and debate, and another that did. The research examines how this educational experience influences students' self-perceived knowledge of GenAI and explores the impact of other variables, such as the participants’ level of education and the type of studies they pursued. From the qualitative analysis, seven categories emerged, grouping the ethical principles that students should consider when engaging with GenAI. The findings demonstrate that specific training on GenAI improves students’ understanding, helping them critically assess its potential and challenges. Additionally, the results contribute to enhancing course components related to GenAI, fostering a more responsible and reflective approach to its use.
Downloads
References
Acosta-Enriquez, B. G., Arbulú Ballesteros, M. A., Huamaní Jordan, O., López Roca, C., & Saavedra Tirado, K. (2024). Analysis of college students' attitudes toward the use of ChatGPT in their academic activities: effect of intent to use, verification of information and responsible use. BMC Psychology, 12(1), 1-18. https://doi.org/10.1186/s40359-024-01764-z
Al Shloul, T., Mazhar, T., Abbas, Q., Iqbal, M., Ghadi, Y. Y., Shahzad, T., Mallek, F., & Hamam, H. (2024). Role of activity-based learning and ChatGPT on students' performance in education. Computers and Education: Artificial Intelligence, 6, 100219. https://doi.org/10.1016/j.caeai.2024.100219
Andión, M., & Cárdenas, D. I. (2023). Convivir con inteligencias artificiales en la educación superior: Retos y estrategias. Perfiles Educativos, 45(Especial), 56-69. https://doi.org/10.22201/iisue.24486167e.2023.Especial.61691
Bonilla-García, M. Á., & López-Suárez, A. D. (2016). Ejemplificación del proceso metodológico de la teoría fundamentada. Cinta de moebio, (57), 305-315. https://doi.org/10.4067/S0717-554X2016000300006
Cebrián-Robles, V., Raposo-Rivas, M., Cebrián-de-la-Serna, M., & Sarmiento-Campos, J. A. (2018). Percepción sobre el plagio académico de estudiantes universitarios españoles. Educación XX1, 21(2), 105-129. https://doi.org/10.5944/educxx1.20062
Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1), 1-25. https://doi.org/10.1186/s41239-023-00408-3
Chan, C. K. Y., & Tsi, L. H. Y. (2024). Will generative AI replace teachers in higher education? A study of teacher and student perceptions. Studies in Educational Evaluation, 83, 101395. https://doi.org/10.1016/j.stueduc.2024.101395
Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A. Yee, L., & Zemmel, R. (2023). The economic potential of generative AI: The next productivity frontier. McKinsey Global Institute. http://dln.jaipuria.ac.in:8080/jspui/bitstream/123456789/14313/1/The-economic-potential-of-generative-ai-the-next-productivity-frontier.pdf
Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228-239. https://doi.org/10.1080/14703297.2023.2190148
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.
Cruz Argudo, F., García Varea, I., Martínez Carrascal, J. A., Ruiz Martínez, A., Ruiz Martínez, P. M., Sánchez Campos, A., & Turró Ribalta, C. (2024). La Inteligencia Artificial Generativa en la docencia universitaria: Oportunidades, desafíos y recomendaciones. Crue Universidades Españolas. https://www.crue.org/wp-content/uploads/2024/03/Crue-Digitalizacion_IA-Generativa.pdf
European Parliament. (2024). Reglamento de Inteligencia Artificial (2024/0138(COD)). https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_ES.pdf
Farahani, M., & Ghasemi, G. (2024). Artificial Intelligence and Inequality: Challenges and Opportunities. International Journal of Innovation in Education, 9, 78-99. https://doi.org/10.32388/7hwuz2
Frey, C. B., & Osborne, M. (2023). Generative AI and the Future of Work: A Reappraisal. The Brown Journal of World Affairs, XXX(1). https://bjwa.brown.edu/30-1/generative-ai-and-the-future-of-work-a-reappraisal/
Gallent-Torres, C., Zapata-González, A., & Ortego-Hernando, J. L. (2023). El impacto de la inteligencia artificial generativa en la educación superior: una mirada desde la ética y la integridad académica. RELIEVE, 29(2), art. M5. https://doi.org/10.30827/relieve.v29i2.29134
García-Peñalvo, F. J., Llorens-Largo, F., & Vidal, J. (2024). La nueva realidad de la educación ante los avances de la inteligencia artificial generativa. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 9-39. https://doi.org/10.5944/ried.27.1.37716
Grassini, S. (2023). Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational Settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070692
Hadi, M. U., Tashi, Qasem Al, Qureshi, R., Shah, A., Muneer, Amgad, Irfan, M., Zafar, A., Shaikh, M. B., Akhtar, N., Wu, J., & Mirjalili, S. (2024). A Survey on Large Language Models: Applications, Challenges, Limitations, and Practical Usage [Preprint]. TechRxiv. https://doi.org/10.36227/techrxiv.23589741.v1
Huang, J., Shen, G., & Xiping, R. (2021). Connotation Analysis and Paradigm Shift of Teaching Design under Artificial Intelligence Technology. International Journal of Emerging Technologies in Learning, 16(5), 73-86. https://doi.org/10.3991/ijet.v16i05.20287
Hwang, G. J., & Chen, N. S. (2023). Editorial Position Paper: Exploring the Potential of Generative Artificial Intelligence in Education: Applications, Challenges, and Future Research Directions. Educational Technology and Society, 26(2). https://doi.org/10.30191/ETS.202304_26(2).0014
Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87-99. https://doi.org/10.1016/j.bushor.2022.03.002
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1, 389-399. https://doi.org/10.1038/s42256-019-0088-2
Johnston, H., Wells, R. F., Shanks, E. M., Boey, T., & Parsons, B. N. (2024). Student perspectives on the use of generative artificial intelligence technologies in higher education. International Journal for Educational Integrity, 20(1), 1-21. https://doi.org/10.1007/s40979-024-00149-4
Kajiwara, Y., & Kawabata, K. (2024). AI literacy for ethical use of chatbot: Will students accept AI ethics? Computers and Education: Artificial Intelligence, 6, 100251. https://doi.org/10.1016/j.caeai.2024.100251
Kanont, K., Pingmuang, P., Simasathien, T., Wisnuwong, S., Wiwatsiripong, B., Poonpirome, K., Songkram, N., & Khlaisang, J. (2024). Generative-AI, a Learning Assistant? Factors Influencing Higher-Ed Students' Technology Acceptance. Electronic Journal of E-Learning, 22(6 Special Issue), 18-33. https://doi.org/10.34190/ejel.22.6.3196
Kaya, F., Aydin, F., Schepman, A., Rodway, P. yetişensoy, O., & Demir Kaya, M. (2024). The Roles of Personality Traits, AI Anxiety, and Demographic Factors in Attitudes toward Artificial Intelligence. International Journal of Human-Computer Interaction, 40(2), 497-514. https://doi.org/10.1080/10447318.2022.2151730
Kong, S.-C., Cheung, W. M.-Y., & Zhang, G. (2023). Evaluating an Artificial Intelligence Literacy Programme for Developing University Students' Conceptual Understanding, Literacy, Empowerment and Ethical Awareness. Educational Technology & Society, 26(1), 16-30. https://doi.org/10.30191/ETS.202301_26(1).0002
Łabuz, M., & Nehring, C. (2024). Information apocalypse or overblown fears-what AI mis- and disinformation is all about? Shifting away from technology toward human reactions. Politics and Policy, 52(4), 874-891. https://doi.org/10.1111/polp.12617
Lee, D., Arnold, M., Srivastava, A., Plastow, K., Strelan, P., Ploeckl, F., & Palmer, E. (2024). The impact of generative AI on higher education learning and teaching: A study of educators' perspectives. Computers and Education: Artificial Intelligence, 6, 100221. https://doi.org/10.1016/j.caeai.2024.100221
Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 1-13. https://doi.org/10.1016/j.ijme.2023.100790
Martínez-Bravo, M. C., Sádaba Chalezquer, C., & Serrano-Puche, J. (2021). Meta-marco de la alfabetización digital: análisis comparado de marcos de competencias del Siglo XXI. Revista Latina de Comunicación Social, 79, 76-110. https://doi.org/10.4185/RLCS-2021-1508
Mohamed, A. M., Shaaban, T. S., Bakry, S. H., Guillén-Gámez, F. D., & Strzelecki, A. (2024). Empowering the Faculty of Education Students: Applying AI's Potential for Motivating and Enhancing Learning. Innovative Higher Education, 1-23. https://doi.org/10.1007/s10755-024-09747-z
Newell, S. J. (2023). Employing the interactive oral to mitigate threats to academic integrity from ChatGPT. Scholarship of Teaching and Learning in Psychology. https://doi.org/10.1037/stl0000371
Ponce del Castillo, A. (2024). Exposing generative AI: Human-Dependent, Legally Uncertain, Environmentally Unsustainable [Preprint]. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4975411
Pragya, A. (2024). Generative AI and epistemic diversity of its inputs and outputs: call for further scrutiny. AI and Society, 1-2. https://doi.org/10.1007/s00146-024-02097-6
Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for Education and Research: Opportunities, Threats, and Strategies. Applied Sciences, 13(9), 5783. https://doi.org/10.3390/app13095783
Raman, R., Kumar Nair, V., Nedungadi, P., Kumar Sahu, A., Kowalski, R., Ramanathan, S., & Achuthan, K. (2024). Fake news research trends, linkages to generative artificial intelligence and sustainable development goals. Heliyon, 10(3), e24727. https://doi.org/10.1016/j.heliyon.2024.e24727
Rane, N., Choudhary, S., & Rane, J. (2024). Contribution of ChatGPT and Similar Generative Artificial Intelligence for Enhanced Climate Change Mitigation Strategies [Preprint]. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4681720
Roe, J., Perkins, M., & Furze, L. (2024). Deepfakes and Higher Education: A Research Agenda and Scoping Review of Synthetic Media. Journal of University Teaching and Learning Practice, 1-22. https://doi.org/10.53761/2y2np178
Romero Carbonell, M., Romeu Fontanillas, T., Guitert Catasús, M., & Baztán Quemada, P. (2024). Validation of the OCPBL model for online collaborative project-based learning [Validación del modelo ABPCL para el aprendizaje basado en proyectos colaborativos en línea]. RIED-Revista Iberoamericana de Educación a Distancia, 27(2), 159-181. https://doi.org/10.5944/ried.27.2.39120
Ruiz Mendoza, K. K., Miramontes Arteaga, M. A., & Reyna García, C. (2024). Percepciones y expectativas de estudiantes universitarios sobre la IAG. European Public & Social Innovation Review, 9, 1-21. https://doi.org/10.31637/epsir-2024-357
Ruiz-Rojas, L. I., Salvador-Ullauri, L., & Acosta-Vargas, P. (2024). Collaborative Working and Critical Thinking: Adoption of Generative Artificial Intelligence Tools in Higher Education. Sustainability, 16(13), 5367. https://doi.org/10.3390/su16135367
Ruschemeier, H. (2024). Generative AI and Data Protection. In C. Poncibo, M. Ebers, R. Calo, & M. Zou (Eds.), Handbook on Generative AI and the Law (pp. 1-18). Cambridge University Press. https://doi.org/10.1017/cfl.2024.2
Sebastià, I. (2024). Inteligencia artificial generativa. Universitat Oberta de Catalunya. https://iag.recursos.uoc.edu/es/
Shahzad, M. F., Xu, S., & Asif, M. (2024). Factors affecting generative artificial intelligence, such as ChatGPT, use in higher education: An application of technology acceptance model. British Educational Research Journal, 1-25. https://doi.org/10.1002/berj.4084
Shi, Y. (2023). Study on security risks and legal regulations of generative artificial intelligence. Science of Law Journal, 2(11), 17-23. https://doi.org/10.23977/law.2023.021104
Shoaib, M. R., Wang, Z., Ahvanooey, M. T., & Zhao, J. (2023). Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models. ICCA 2023 - 2023 5th International Conference on Computer and Applications, Proceedings. https://doi.org/10.1109/ICCA59364.2023.10401723
Stöhr, C., Ou, A. W., & Malmström, H. (2024). Perceptions and usage of AI chatbots among students in higher education across genders, academic levels and fields of study. Computers and Education: Artificial Intelligence, 7, 100259. https://doi.org/10.1016/j.caeai.2024.100259
Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students' acceptance and use of technology. Interactive Learning Environments, 32(9), 5142-5155. https://doi.org/10.1080/10494820.2023.2209881
Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, 6(1), 1-10. https://doi.org/10.37074/jalt.2023.6.1.17
UNESCO. (2019). Beijing Consensus on Artificial Intelligence and Education. https://unesdoc.unesco.org/ark:/48223/pf0000368303
UNESCO. (2021a). Ethics of Artificial Intelligence: The Recommendation. https://www.unesco.org/en/artificial-intelligence/recommendation-ethics?hub=32618
UNESCO. (2021b). Inteligencia artificial y educación: guía para las personas a cargo de formular políticas. https://unesdoc.unesco.org/ark:/48223/pf0000379376
UNESCO. (2023). Guidance for generative AI in education and research. https://www.unesco.org/en/articles/guidance-generative-ai-education-and-research
Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7-30. https://doi.org/10.15678/EBER.2023.110201
Wang, L., & Li, W. (2024). The Impact of AI Usage on University Students' Willingness for Autonomous Learning. Behavioral Sciences, 14(10), 956. https://doi.org/10.3390/bs14100956
Wang, X., & Lei, L. (2024). A Path Study of Generative Artificial Intelligence Enabling Online Education Platforms in Colleges and Universities. Proceedings of the 2024 International Symposium on Artificial Intelligence for Education, 332-338. https://doi.org/10.1145/3700297.3700354
Wilmers, N. (2024). Generative AI and the Future of Inequality. An MIT Exploration of Generative AI. MIT. https://doi.org/10.21428/e4baedd9.777b7123
Zarifhonarvar, A. (2024). Economics of ChatGPT: a labor market view on the occupational impact of artificial intelligence. Journal of Electronic Business & Digital Economics, 3(2), 100-116. https://doi.org/10.1108/jebde-10-2023-0021
Zhou, Y., Zhou, Y., & Machtmes, K. (2024). Mixed methods integration strategies used in education: A systematic review. Methodological Innovations, 17(1), 41-49. https://doi.org/10.1177/20597991231217937
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Marc Romero Carbonell, Teresa Romeu Fontanillas, Montse Guitert Catasús, Pablo Baztán Quemada

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles that are published in this journal are subject to the following terms:
1. The authors grant the exploitation rights of the work accepted for publication to RIED, guarantee to the journal the right to be the first publication of research understaken and permit the journal to distribute the work published under the license indicated in point 2.
2. The articles are published in the electronic edition of the journal under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. You can copy and redistribute the material in any medium or format, adapt, remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
3. Conditions for self-archiving. Authors are encouraged to disseminate electronically the OnlineFirst version (assessed version and accepted for publication) of its articles before publication, always with reference to its publication by RIED, favoring its circulation and dissemination earlier and with this a possible increase in its citation and reach among the academic community.

