Teacher scaffolding for knowledge building in the educational research classroom

Authors

DOI:

https://doi.org/10.5944/ried.27.2.38969

Keywords:

teaching, educational innovation, educational research, group learning, educational technology, didactic use of computer

Abstract

Knowledge Building is an educational model characterized by its emphasis on the collective responsibility of students to improve collective ideas. Previous studies have demonstrated the benefits of Knowledge Building in science education. This study implements this pedagogy in the field of educational research and pursues two objectives: i) to analyze the quality level of student contributions when participating in a collaborative space to enhance ideas, and ii) to analyze the scaffolding employed by teachers during the implementation. A mixed-method design (qualitative and quantitative) was employed to collect data. The participants consisted of 59 undergraduate social education students enrolled in an action-research course. Data on the quality of discourse were collected from the entries or notes created by students on the Knowledge Forum platform, while data on teacher scaffolding as perceived by the students was obtained through interviews. The results of this study demonstrate that most student contributions are of high quality, although participation shows a slightly uneven distribution. Furthermore, this study broadens our understanding of the teaching scaffolds that support students' knowledge construction in educational research and offers teaching scaffolds that can be applied in various constructivist learning contexts aimed at promoting student autonomy to collaborate in knowledge creation.

Downloads

Download data is not yet available.

Author Biographies

Calixto Gutiérrez-Braojos, Universidad de Granada, UGR (Spain)

Phd. Gutiérrez-Braojos is a tenured professor at the University of Granada in the Department of Research Methods and Diagnosis in Education. He is responsible for the Hum-126 Group. His research interests lie at the intersection of learning analytics, collaborative learning, higher mental functions, and educational technologies. He researches with a mixed methods approach. He has completed several long stays at the University of Toronto (Institute for Knowledge Innovation and Technology), University of California-San Diego (Institute for Comparative Human Cognition), and Autonomous University of Barcelona (SINTE).

Paula Rodríguez-Chirino, Universidad de Granada, UGR (Spain)

PhD student at the University of Granada. The thesis focuses on the research of Knowledge Building pedagogy in Higher Education. It is framed within an R+D+i project with reference ID2020-116872RA-I00 "Development of Analytical Technologies for Knowledge Building in Educational Communities".

Beatriz Pedrosa Vico, Universidad de Granada, UGR (Spain)

Assisstand Professor at UGR, in the Department of Research and Diagnostic Methods in Education, and member of the HUM126 Research Group. Previously, she held the position of Full Professor at the SAFA University Center, Úbeda. Participates in various R&D projects, specializing in interculturality, alternative methodologies, and conflict resolution.

Sonia Rodríguez Fernández, Universidad de Granada, UGR (Spain)

Phd. Sonia Rodríguez Fernández, University Professor in the Department of Research Methods and Diagnosis in Education. Graduate in Psychopedagogy and Doctor from the University of Granada (2003). Teacher in various university degrees and training paths related to guidance and tutoring, multivariate analysis and educational research.

References

Bereiter, C., & Scardamalia, M. (2016). “Good Moves” in knowledge-creating dialogue. QWERTY, 11, 2 (2016), 12-26.

Biggs, J. B. (2011). Teaching for quality learning at university. Open University Press/McGraw Hill.

Böttcher, F., & Thiel, F. (2018). Evaluating research-oriented teaching: a new instrument to assess university students’ research competences. Higher Education, 75, 91-110. https://doi.org/10.1007/s10734-017-0128-y

Cacciamani, S., Perrucci, V., & Fujita, N. (2021). Promoting students’ collective cognitive responsibility through concurrent, embedded, and transformative assessment in blended higher education courses. Technology, Knowledge, and Learning, 26(4), 1169-1194. https://doi.org/10.1007/s10758-021-09535-0

Cai, H., & Gu, X. (2022). Factors that influence the different levels of individuals’ understanding after collaborative problem solving: the effects of shared representational guidance and prior knowledge. Interactive Learning Environments, 30(4), 695-706, https://doi.org/10.1080/10494820.2019.1679841

Chan, C., Tsui, M., Chan, M., & Hong, H. (2002). Applying the structure of the observed learning outcomes (SOLO) taxonomy on student's learning outcomes: An empirical study. Assessment & Evaluation in Higher Education, 27(6), 511-527. https://doi.org/10.1080/0260293022000020282

Chen, B., & Hong, H.-Y. (2016). Schools as knowledge building organizations: thirty years of design research. Educational Psychologist, 51(2), 266–288. https://doi.org/10.1080/00461520.2016.1175306

Chen, J., Wang, M., Kirschner, P., & Tsai, C. C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research, 88(6), 799-843. https://doi.org/10.3102/0034654318791584

Chen, J., Wang, M., Kirschner, P., & Tsai, C. C. (2019). A metaanalysis examining the moderating effects of educational level and subject area on CSCL effectiveness. Knowledge Management & E-Learning, 11(4), 409-427. https://doi.org/10.34105/j.kmel.2019.11.022

Chen, D., Zhang, Y., Luo, H., Zhu, Z., Ma, J., & Lin, Y. (2024). Effects of group awareness support in CSCL on students’ learning performance: A three-level meta-analysis. International Journal of Computer-Supported Collaborative Learning, 1-33. https://doi.org/10.1007/s11412-024-09418-3

Chevrier, M., Muis, K. R., Trevors, G. J., Pekrun, R., & Sinatra, G. M. (2019). Exploring the antecedents and consequences of epistemic emotions. Learning and instruction, 63, 101209. https://doi.org/10.1016/j.learninstruc.2019.05.006

Ciraso-Calí, A., Martínez-Fernández, J. R., París-Mañas, G., Sánchez-Martí, A., & García-Ravidá, L. B. (2022). The research competence: acquisition and development among undergraduates in education sciences. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.836165

Coll Salvador, C., Díaz Barriga Arceo, F., Engel Rocamora, A., & Salinas Ibáñez, J. (2023). Evidencias de aprendizaje en prácticas educativas mediadas por tecnologías digitales. RIED-Revista Iberoamericana de Educación a Distancia, 26(2), 9-25. https://doi.org/10.5944/ried.26.2.37293

Creswell, J. W., & Guetterman, T. C. (2021). Educational research: planning, conducting, and evaluating quantitative and qualitative research (Sixth, global edition). Pearson.

Earley, M. A. (2014). A synthesis of the literature on research methods education. Teaching in Higher Education, 19(3), 242-253. https://doi.org/10.1080/13562517.2013.860105

Endres, T., Lovell, O., Morkunas, D., Rieß, W., & Renkl, A. (2023). Can prior knowledge increase task complexity? – Cases in which higher prior knowledge leads to higher intrinsic cognitive load. British Journal of Educational Psychology, 93(2), 305-3017. https://doi.org/10.1111/bjep.12563

Fernández-Miranda, M., Dios-Castillo, C. A., Sosa-Córdova, D. M., & Camilo-Cépeda, A. (2022). Inverted method and didactic model: a motivating perspective of virtual learning in pandemic contexts. Bordón. Revista de Pedagogía, 74(3), 11-33. https://doi.org/10.13042/Bordon.2022.92677

Finelli, C. J., & Borrego, M. J. (2020). Evidence-based strategies to reduce student resistance to active learning. In J. J. Mintzes & E. M. Walter (Eds.), Active learning in college science: The case for evidence-based practice. (pp. 943-952). Springer Nature. https://doi.org/10.1007/978-3-030-33600-4_58

García Peñalvo, F. J., Llorens-Largo, F., & Vidal, J. (2024). The new reality of education in the face of advances in generative artificial intelligence. [La nueva realidad de la educación ante los avances de la inteligencia artificial generativa]. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), pp. 9-39. https://doi.org/10.5944/ried.27.1.37716

Gess, C., Geiger, C., & Ziegler, M. (2018). Social-scientific research competency. European Journal of Psychological Assessment, 35(5), 737-750. https://doi.org/10.1027/1015-5759/a000451

Gussen L., Schumacher F., Großmann N., Ferreira González L., Schlüter, K., & Großschedl, J. (2023) Supporting pre-service teachers in developing research competence. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1197938

Gutiérrez-Braojos, C., Daniela, L., Montejo-Gámez, J., & Aliaga, F. (2022). Developing and comparing indices to evaluate community knowledge building in an educational research course. Sustainability, 14, 10603. https://doi.org/10.3390/su141710603

Gutiérrez-Braojos, C., Montejo-Gámez, J., Ma, L., Chen, B., de Escalona-Fernández, M. M., Scardamalia, M., & Bereiter, C. (2018). Exploring collective cognitive responsibility through the emergence and flow of forms of engagement in a knowledge building community. In L. Daniela (Ed.), Didactics of smart pedagogy (pp. 213-232). Cham: Springer. https://doi.org/10.1007/978-3-030-01551-0_11

Gutiérrez-Braojos, C., Montejo Gámez, J., Poza Vílches, F., & Marín-Jiménez, A. (2020). Evaluación de la investigación sobre la pedagogía Construcción de Conocimiento: un enfoque metodológico mixto. RELIEVE - Revista Electrónica De Investigación Y Evaluación Educativa, 26(1). https://doi.org/10.7203/relieve.26.1.16671

Gutiérrez-Braojos, C., Rodríguez-Domínguez, C., Daniela, L., & Carranza-García, F. (2023). An analytical dashboard of collaborative activities for the knowledge building. Technology, Knowledge and Learning, 1-27. https://doi.org/10.1007/s10758-023-09644-y

Holmes, K. (2005). Analysis of asynchronous online discussion using the SOLO Taxonomy. Australian Journal of Educational & Developmental Psychology, 5, 117-127.

Hong, H. Y., & Scardamalia, M. (2014). Community knowledge assessment in a knowledge building environment. Computers & Education, 71. 279-288. https://doi.org/10.1016/j.compedu.2013.09.009

Järvelä, S., Gašević, D., Seppänen, T., Pechenizkiy, M., & Kirschner, P. A. (2020). Bridging learning sciences, machine learning and affective computing for understanding cognition and affect in collaborative learning. British Journal of Educational Technology, 51(6), 2391– 2406. https://doi.org/10.1111/bjet.12917

Järvelä, S., Nguyen, A., Vuorenmaa, E., Malmberg, J., & Järvenoja, H. (2023). Predicting regulatory activities for socially shared regulation to optimize collaborative learning. Computers in Human Behavior, 144, 107737. https://doi.org/10.1016/j.chb.2023.107737

Jiao, Q. G., DaRos-Voseles, D. A., Collins., K. M. T., & Onwuegbuzie, A. J. (2011). Academic procrastination and the performance of graduate-level cooperative groups in research methods courses. Journal of the Scholarship of Teaching and Learning, 11, 119–138.

Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a definition of mixed methods research. Journal of Mixed Methods Research, 1(2), 112-133. https://doi.org/10.1177/1558689806298224

Khan, S., & Krell, M. (2019). Scientific reasoning competencies: a case of preservice teacher education. Canadian Journal of Science, Mathematics and Technology Education, 19, 446-464. https://doi.org/10.1007/s42330-019-00063-9

Khanlari, A. (2019). Knowledge Building in robotics for math education. Knowledge Building Summer Institute: Knowledge Building Practices and Technology for Global Hubs of Innovation. March 27-20.

Khanlari, A., Zhu, G., & Scardamalia, M. (2019). Knowledge building analytics to explore crossing disciplinary and grade-level boundaries. Journal of Learning Analytics, 60(3), 60-75. https://doi.org/10.18608/jla.2019.63.9

Laferrière, T., & Lamon, M. (2010). Knowledge Building / Knowledge Forum®: The transformation of classroom discourse. In M. S. Khine e I. M. Saleb (Eds.), New Science of Learning: Cognition, Computers and Collaboration in Education (pp. 485-502). Springer. https://doi.org/10.1007/978-1-4419-5716-0_24

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the trees: novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122. https://doi.org/10.1145/1140123.1140157

Liu, R., Wang, L., Koszalka, T. A., & Wan, K. (2022). Effects of immersive virtual reality classrooms on students' academic achievement, motivation, and cognitive load in science lessons. Journal of Computer Assisted Learning, 38, 1422-1433. https://doi.org/10.1111/jcal.12688

Ma, J., Zhou, X., Chen, R., & Dong, X. (2019). Does ambidextrous leadership motivate work crafting? International Journal of Hospitality Management, 77, 159-168. https://doi.org/10.1016/j.ijhm.2018.06.025

Ma, L., & Scardamalia, M. (2022). Teachers as designers in knowledge building innovation networks. In M.-C. Shanahan, B. Kim, M. A. Takeuchi, K. Koh, A. P. Preciado-Babb & P. Sengupta (Eds.), The Learning Sciences in Conversation (pp. 107-120). Routledge. https://doi.org/10.4324/9781003089728-13

Madison, A., Michael P., Finelli, C., Graham, M., Borrego, M., & Husman, J. (2022). Explanation and Facilitation Strategies Reduce Student Resistance to Active Learning. College Teaching, 70(4), 530-540. https://doi.org/10.1080/87567555.2021.1987183

McKeown, J., Hmelo-Silver, C. E., Jeong, H., Hartley, K., Faulkner, R., & Emmanuel, N. (2017). A Meta-Synthesis of CSCL Literature in STEM Education. In B. K. Smith, M. Borge, E. Mercier & K. Y. Lim (Eds.), Making a Difference: Prioritizing Equity and Access in CSCL, 12th International Conference on Computer Supported Collaborative Learning (CSCL) 2017, Volume 1. International Society of the Learning Sciences.

McLeod, S. (2019). Constructivism as a theory for teaching and learning. Educational Technology, 40(6), 12-28. https://doi.org/10.47747/ijets.v2i1.586

Murtonen, M. (2015). University students' understanding of the concepts empirical, theoretical, qualitative and quantitative research. Teaching in Higher Education, 20(7), 684-698. https://doi.org/10.1080/13562517.2015.1072152

Murtonen, M., & Salmento, H. (2019). Broadening the theory of scientific thinking for higher education. In M. Murtonen & K. Balloo (Eds.), Redefining scientific thinking for higher education: higher-order thinking, evidence-based reasoning and research skills (pp. 3-29). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-24215-2_1

Nind, M., Michelle Holmes, M., Michela Insenga, M., Sarah Lewthwaite, S., & Cordelia Sutton, C. (2020). Student perspectives on learning research methods in the social sciences. Teaching in Higher Education, 25(7), 797-811. https://doi.org/10.1080/13562517.2019.1592150

Palacios-Ortega, A., Pascual-López, V., & Moreno-Mediavilla, D. (2022). The role of new technologies in STEM education. Bordón. Revista de Pedagogía, 74(4), 11-21. https://doi.org/10.13042/Bordon.2022.96550

Pekrun, R., Cusack, A., Murayama, K., Elliot, A. J., & Thomas, K. (2014). The power of anticipated feed-back: Effects on students’ achievement goals and achievement emotions. Learning and Instruction, 29, 115-124. https://doi.org/10.1016/j.learninstruc.2013.09.002

Popper, K. (1972). Objective Knowledge. An Evolutionary Approach. Oxford U.P.

Puntambekar, S., Gnesdilow, D., Dornfeld Tissenbaum, C., Narayanan, N. H., & Rebello, N. S. (2021). Supporting middle school students’ science talk: a comparison of physical and virtual labs. Journal of Research in Science Teaching, 58(3), 392-419. https://doi.org/10.1002/tea.21664

Radkowitsch, A., Vogel, F., & Fischer, F. (2020). Good for learning, bad for motivation? A meta-analysis on the effects of computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 15, 5-47. https://doi.org/10.1007/s11412-020-09316-4

Rannikmäe, M., Holbrook, J., & Soobard, R. (2020). Social constructivism - Jerome Bruner. In B. Akpan & T. J. Kennedy (Eds.), Science education in theory and practice: an introductory guide to learning theory, (pp. 259-275). https://doi.org/10.1007/978-3-030-43620-9_18

Rousseau, R., Zhang, L., & Sivertsen, G. (2023). Using the weighted Lorenz curve to represent balance in collaborations: the BIC indicator. Scientometrics, 128, 609-622. https://doi.org/10.1007/s11192-022-04533-0

Salgado-Orellana, N., Berrocal de-Luna, E., & Gutiérrez-Braojos, C. (2021). A scientometric study of doctoral theses on the Roma in the Iberian Peninsula during the 1977-2018 period. Scientometrics, 126, 437-458. https://doi.org/10.1007/s11192-020-03723-y

Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal Education in a Knowledge Society (pp. 67-98). Open Court.

Scardamalia, M. (2004). CSILE/Knowledge Forum. In A. Kovalchick & K. Dawson (Eds.), Education and technology: An encyclopedia (pp. 183-192). ABC-CLIO.

Scardamalia, M., & Bereiter, C. (1996). Computer support for knowledge-building communities. In T. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 249-268). Lawrence Erlbaum Associates.

Scardamalia, M., & Bereiter, C. (2021). Knowledge Building: advancing the state of community knowledge. In U. Cress, C. Rosé, A. F. Wise & J. Oshima (Eds.), International handbook of computer-supported collaborative learning. Computer-Supported Collaborative Learning Series, 19. Springer, Cham. https://doi.org/10.1007/978-3-030-65291-3_14

Schnaubert, L., & Vogel, F. (2022). Integrating collaboration scripts, group awareness, and self-regulation in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning, 17, 1-10. https://doi.org/10.1007/s11412-022-09367-9

Schrire, S. (2006). Knowledge building in asynchronous discussion groups: going beyond quantitative analysis. Computers & Education, 46, 49-70. https://doi.org/10.1016/j.compedu.2005.04.006

Slof, B., van Leeuwen, A., Janssen, J., & Kirschner, P. A. (2020). Mine, ours and yours, whose engagement and prior knowledge affects individual achievement from online collaborative learning? Journal Computer Assisted Learning, 37, 39-50. https://doi.org/10.1111/jcal.12466

Soliman, D., Costa, S., & Scardamalia, M. (2021). Knowledge building in online mode: Insights and reflections. Education Sciences, 11(8), 425. https://doi.org/10.3390/educsci11080425

Stahl, G. (2020). Theoretical investigations: philosophical foundations of group cognition. Springer International Publishing. https://doi.org/10.1007/978-3-030-49157-4

Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 409-426). Cambridge University Press. https://doi.org/10.1017/CBO9780511816833.025

Stahl, G., & Hakkarainen, K. (2021). Theories of CSCL. In U. Cress, C. Rose, A. F. Wise & J. Oshima (Eds.), International Handbook of Computer Supported Collaborative Learning (pp. 23-43). Springer. https://doi.org/10.1007/978-3-030-65291-3_2

Strauß, S., & Rummel, N. (2021). Promoting regulation of equal participation in online collaboration by combining a group awareness tool and adaptive prompts. But does it even matter? International Journal of Computer-Supported Collaborative Learning, 16(1), 67-104. https://doi.org/10.1007/s11412-021-09340-y

Svendsen, B., & Burner, T. (2023). Gifted Students and Gradeless Formative Assessment: A Case Study from Norway. Journal for the Education of the Gifted, 46(3), 259-275. https://doi.org/10.1177/01623532231180883

Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261-292. https://doi.org/10.1007/s10648-019-09465-5

Tammeleht, A., Koort, K., Rodríguez-Triana, M. J., & Löfström, E. (2022). Knowledge building process during collaborative research ethics training for researchers: experiences from one university. International Journal of Ethics Education, 7, 147-170. https://doi.org/10.1007/s40889-021-00138-y

Tan, S. C., Chan, C., Bielaczyc, K., Ma, L., Scardamalia, M., & Bereiter, C. (2021). Knowledge building: aligning education with needs for knowledge creation in the digital age. Educational Technology Research and Development, 69, 1-24. https://doi.org/10.1007/s11423-020-09914-x

Tan, S. C., Chen, W., & Chua, B. L. (2023). Leveraging generative artificial intelligence based on large language models for collaborative learning. Learning, Research and Practice, 9(2), 125-134. https://doi.org/10.1080/23735082.2023.2258895

Tarchi, C., Chuy, M., Donoahue, Z., Stephenson, C., Messina, R., & Scardamalia, M. (2013). Knowledge building and knowledge forum: getting started with pedagogy and technology. LEARNing Landscapes, 6(2), 385-407. https://doi.org/10.36510/learnland.v6i2.623

Teo, C. L., & Tan, S. C. (2023). Supporting knowledge building with digital technologies: From computer supported collaborative learning to analytics and artificial intelligence. In S. Y. L. Chye & B. L. Chua (Eds.), Pedagogy and Psychology in Digital Education (pp. 137-157). https://doi.org/10.1007/978-981-99-2107-2_8

Tharayil, S., Borrego, M., Prince, M., Nguyen, K. A., Shekhar, P., Finelli, C. J., & Waters, C. (2018). Strategies to mitigate student resistance to active learning. International Journal of STEM Education, 5, 1-16. https://doi.org/10.1186/s40594-018-0102-y

Tucker, T., Shehab, S., & Mercier, E. (2020). Using the Gini coefficient to characterize the distribution of group problem-solving processes in collaborative tasks. In M. Gresalfi e I. S. Horn (Eds.), 14th International Conference of the Learning Sciences: The Interdisciplinarity of the Learning Sciences, ICLS 2020 - Conference Proceedings (pp. 1761-1762). (Computer-Supported Collaborative Learning Conference, CSCL; Vol. 3). International Society of the Learning Sciences (ISLS). https://doi.org/10.22318/icls2020.1761

Van de Pol, J., Mercer, N., & Volman, M. (2019). Scaffolding student understanding in small-group work: Students’ uptake of teacher support in subsequent small-group interaction. Journal of the Learning Sciences, 28(2), 206-239. https://doi.org/10.1080/10508406.2018.1522258

Vandiver, D. M., & Walsh, J. A. (2010). Assessing autonomous learning in research methods courses: Implementing the student-driven research project. Active Learning in Higher Education, 11(1), 31-42. https://doi.org/10.1177/1469787409355877

Vygotsky, L. S. (1978). Mind in society: Development of higher psychological processes. Harvard University Press.

Yang, Y., Yuan, K., Feng, X., Li, X., & van Aalst, J. (2022). Fostering low‐achieving students' productive disciplinary engagement through knowledge‐building inquiry and reflective assessment. British Journal of Educational Technology, 53(6), 1511-1529. https://doi.org/10.1111/bjet.13267

Yang, Y., Zhu, G., Sun, D., & Chan, C. K. K. (2022). Collaborative analytics-supported reflective assessment for scaffolding pre-service teachers’ collaborative inquiry and knowledge building. International Journal of Computer-Supported Collaborative Learning, 17(2), 249-292. https://doi.org/10.1007/s11412-022-09372-y

Zhang, N., Liu, Q., Zhu, J., Wang, Q., & Xie, K. (2020). Analysis of temporal characteristics of collaborative knowledge construction in teacher workshops. Technology Knowledge and Learning, 25, 323-336. https://doi.org/10.1007/s10758-019-09422-9

Zheng, L., Zhong, L., Niu, J., Long, M., & Zhao, J. (2021). Effects of personalized intervention on collaborative knowledge building, group performance, socially shared metacognitive regulation, and cognitive load in computer-supported collaborative learning. Educational Technology & Society, 24(3), 174-193. https://www.jstor.org/stable/27032864

Zhu, G., & Lin, F. (2023). Teachers scaffold student discourse and emotions in knowledge building classrooms. Interactive Learning Environments, 31, 1-18. https://doi.org/10.1080/10494820.2023.2172046

Published

2024-04-18

How to Cite

Gutiérrez-Braojos, C., Rodríguez-Chirino, P., Pedrosa Vico, B., & Rodríguez Fernández, S. (2024). Teacher scaffolding for knowledge building in the educational research classroom. RIED. Revista Iberoamericana de Educación a Distancia, 27(2), 127–157. https://doi.org/10.5944/ried.27.2.38969