Learning analytics and data-driven education: A growing field

Authors

DOI:

https://doi.org/10.5944/ried.23.2.27105

Keywords:

learning analytics, educational technology, data-based education, data science, educational science, educational research.

Abstract

The growing presence of digital mediation systems in most educational spaces —whether face-to-face or not, formalized or open, and at basic or lifelong learning levels— has accelerated the advance of learning analytics and the use of data in education as a common practice. Using digital educational tools facilitates the interaction between students, teachers and learning resources in the digital world, and generates a remarkable volume of data that can be analyzed by applying a variety of methodologies. Thus, research focused on information generated by student activity in digital spaces has risen exponentially. Based on this evidence, this special issue shows a set of studies in the field of data-driven educational research and the field of digital learning, which enriches knowledge about learning processes and management of teaching in digitally mediated spaces.

Downloads

Author Biographies

Daniel Domínguez Figaredo, Universidad Nacional de Educación a Distancia

Daniel Domínguez Figaredo es profesor e investigador de la Universidad Nacional de Educación a Distancia (UNED, España). Su investigación se centra en la mediación digital y las teorías que apoyan el aprendizaje abierto y conectado a lo largo de la vida. En su trabajo reciente ha profundizado en el análisis de la educación abierta basada en datos y la gestión del conocimiento en entornos digitales y mixtos. Es miembro del grupo de innovación docente CO-Lab: Laboratorio abierto y colaborativo para la innovación docente, y patrono de la Fundación Prácticas en la CiberSociedad.

Justin Reich, Massachusetts Institute of Technology (MIT)

Justin Reich es profesor adjunto de Estudios Comparados de Medios de Comunicación en el Massachusetts Institute of Technology (MIT, Estados Unidos) y director del Laboratorio de Sistemas de Enseñanza del MIT, cuya misión es la de diseñar, implementar e investigar sobre el futuro del aprendizaje del profesorado.

José A. Ruipérez-Valiente, Universidad de Murcia

José A. Ruipérez-Valiente es investigador Juan de la Cierva en el Departamento de la Ingeniería de la Información y las Comunicaciones, de la Facultad de Informática en la Universidad de Murcia (España). Investigador afiliado al MIT Playful Journey Lab. Sus líneas de investigación se centran en el aprendizaje mejorado por tecnología, con un alto grado de foco en la analítica de aprendizaje y minería de datos educacionales.

References

Baker, R. S. (2019). Challenges for the future of educational data mining: The Baker learning analytics prizes. JEDM, Journal of Educational Data Mining, 11(1), 1–17. https://doi.org/10.5281/zenodo.3554745

Barocas, S., & Boyd, D. (2017). Engaging the ethics of data science in practice. Communications of the ACM, 60(11), 23–25. https://doi.org/10.1145/3144172

Buckingham Shum, S., Ferguson, R., & Martinez-Maldonado, R. (2019). Human-Centred Learning Analytics. Journal of Learning Analytics, 6(2), 1–9. https://doi.org/10.18608/jla.2019.62.1

Dollinger, M., & Lodge, J. M. (2018, March). Co-creation strategies for learning analytics. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge (pp. 97–101). https://doi.org/10.1145/3170358.3170372

Gursoy, M. E., Inan, A., Nergiz, M. E., & Saygin, Y. (2016). Privacy-preserving learning analytics: challenges and techniques. IEEE Transactions on Learning technologies, 10(1), 68–81. https://doi.org/10.1109/TLT.2016.2607747

Holstein, K., & Doroudi, S. (2019). Fairness and equity in learning analytics systems (FairLAK). In Companion Proceedings of the Ninth International Learning Analytics & Knowledge Conference (LAK 2019).

Hartong, S., & Förschler, A. (2019). Opening the black box of data-based school monitoring: Data infrastructures, flows and practices in state education agencies. Big Data & Society. https://doi.org/10.1177/2053951719853311

Leitner, P., Ebner, M., & Ebner, M. (2019). Learning Analytics Challenges to Overcome in Higher Education Institutions. In Utilizing Learning Analytics to Support Study Success (pp. 91–104). Springer, Cham.

Mandinach, E. B., & Gummer, E. S. (2016). Data literacy for educators: Making it count in teacher preparation and practice. Teachers College Press.

Shibani, A., Knight, S., & Buckingham Shum, S. (2020). Educator perspectives on learning analytics in classroom practice. The Internet and Higher Education, 46(2020). https://doi.org/10.1016/j.iheduc.2020.100730

Tsai, Y. S., & Gasevic, D. (2017, March). Learning analytics in higher education---challenges and policies: a review of eight learning analytics policies. In Proceedings of the seventh international learning analytics & knowledge conference (pp. 233–242).

Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L., & Kievit, R. A. (2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7(6), 632–638. https://doi.org/10.1177%2F1745691612463078

Wilson, A., Watson, C., Thompson, T. L., Drew, V., & Doyle, S. (2017). Learning analytics: Challenges and limitations. Teaching in Higher Education, 22(8), 991–1007. https://doi.org/10.1080/13562517.2017.1332026

Published

2020-07-01

How to Cite

Domínguez Figaredo, D., Reich, J., & Ruipérez-Valiente, J. A. (2020). Learning analytics and data-driven education: A growing field. RIED-Revista Iberoamericana de Educación a Distancia, 23(2), 33–43. https://doi.org/10.5944/ried.23.2.27105

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > >> 

You may also start an advanced similarity search for this article.