El encuadre pedagógico de los algoritmos educativos basados en datos

Autores/as

DOI:

https://doi.org/10.5944/ried.23.2.26470

Palabras clave:

práctica pedagógica, condiciones de aprendizaje, ciencias de la educación, pedagogía experimental, investigación educativa, tratamiento electrónico de datos.

Resumen

Los datos procedentes de los estudiantes y de las prácticas de aprendizaje son esenciales para alimentar los sistemas de inteligencia artificial empleados en educación. Asimismo, los datos generados recurrentemente son fundamentales para entrenar los algoritmos, de manera que puedan adaptarse a nuevas situaciones, ya sea para mejorar el ciclo de aprendizaje en su conjunto o para gestionar tareas repetitivas. A medida que los algoritmos se propagan en diferentes contextos de aprendizaje y se amplía su capacidad de acción, se requieren marcos pedagógicos que ayuden a interpretarlos y que amparen su uso adecuado. Basándose en el análisis de casos y en una revisión de la literatura científica, en este artículo se analizan los límites de las prácticas de aprendizaje fundamentadas en el uso masivo de datos desde un enfoque pedagógico. Se toman en consideración procesos clave como la captura de los datos, los sesgos en las bases de datos y el factor humano que está presente en el diseño de algoritmos de inteligencia artificial y de sistemas de Aprendizaje Automático. Con el fin de facilitar la gestión adecuada de los algoritmos educativos basados en datos, se plantea la idoneidad de introducir un marco pedagógico que permita analizar la idoneidad de los sistemas de inteligencia artificial y apoyar su evaluación, considerando su impacto en el proceso de aprendizaje. En ese sentido, se propone finalmente un conjunto de reglas de enfoque heurístico con el fin de mejorar los vacíos pedagógicos identificados y que puedan apoyar el uso educativo de los algoritmos basados en datos.

Descargas

Citas

Alsuwaiket, M., Blasi, A.H., & Al-Msie’deen, R.A. (2019). Formulating module assessment for improved academic performance predictability in higher education. Engineering, Technology & Applied Science Research, 9(3), 4287–4291. Retrieved from https://www.etasr.com/index.php/ETASR/article/view/2794/pdf

Amo, D., Fonseca, D., Alier, M., García-Peñalvo, F. J., Casañ, M. J., & Alsina, M. (2019). Personal data broker: A solution to assure data privacy in EdTech. In P. Zaphiris & A. Ioannou (Eds.), Learning and collaboration technologies. Design, experiences. 6th International Conference, LCT 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31, 2019. Proceedings, Part I (pp. 3–14). Cham, Switzerland: Springer Nature.

Ball, S. J., Bowe, R., & Gewirtz, S. (1995). Circuits of schooling: a sociological exploration of parental choice of school in social class contexts. The Sociological Review, 43(1), 52–78.

Bodily, R., & Verbert, K. (2017). Review of research on student-facing learning analytics dashboards and educational recommender systems. IEEE Transactions on Learning Technologies, 10(4), 405–418. Retrieved from https://dblp.org/rec/journals/tlt/BodilyV17

Boyd, D., & Crawford, K. (2012). Critical questions for big data. Provocations for a cultural, technological, and scholarly phenomenon. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878

Brady, H.E. (2019). The challenge of big data and data science. Annual Review of Political Science, 22, 297–323. https://doi.org/10.1146/annurev-polisci-090216-023229

Breslow, L., Pritchard, D.E., DeBoer, J., Stump, G.S., Ho, A.D., & Seaton, D.T. (2013). Studying learning in the worldwide classroom: Research into edX’s first MOOC. Research & Practice in Assessment, 8(1), 13–25. Retrieved from http://www.rpajournal.com/dev/wp-content/uploads/2013/05/SF2.pdf

Buckingham Shum, S., & Ferguson, R. (2012). Social Learning Analytics. Journal of Educational Technology & Society, 15(3), 3–26. Retrieved from https://drive.google.com/file/d/1fu8JL6t8pwfGSkAnktZ4AEWChPjRnbdI/view

Bulger, M. (2016). Personalized learning: The conversations we’re not having. Retrieved from Data & Society Research Institute website: https://datasociety.net/pubs/ecl/PersonalizedLearning_primer_2016.pdf

Bunker, R.P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied Computing and Informatics, 15(1), 27–33. https://doi.org/10.1016/j.aci.2017.09.005

Caplan, R., Donovan, J., Hanson, L., & Matthews, J. (2018). Algorithmic accountability: A primer. Retrieved from Data & Society Research Institute website: https://datasociety.net/pubs/alg_accountability.pdf

Coleman, J.S. (1966). Equality of educational opportunity. U.S. Dept. of Health, Education, and Welfare, Office of Education.

Crawford, K. (2016). Can an algorithm be agonistic? Ten scenes from life in calculated publics. Science, Technology & Human Values, 41(1), 77–92. https://doi.org/10.1177/0162243915589635

Diakopoulos, N., Friedler, S., Arenas, M., Barocas, S., Hay, M., Howe, B., H. V. Jagadish, H.V., Unsworth, K., Sahuguet, A., Tech, C., Venkatasubramanian, S., Wilson, C., Yu, C., & Zevenbergen, B. (2017). Principles for accountable algorithms and a social impact statement for algorithms. FAT/ML. Retrieved from https://www.fatml.org/resources/principles-for-accountable-algorithms

Domínguez, D. (2018). Big Data, educación basada en datos y analítica del aprendizaje. In A. Sacristán (Coord.), Sociedad digital, tecnología y educación (pp. 299–329). Madrid, Spain: UNED.

Domínguez, D., Álvarez, J.F., & Gil-Jaurena, I. (2016). Learning Analytics and Big Data: Heuristics as Interpretive Frameworks. DILEMATA, International Journal of Applied Ethics, 22, 87–103. Retrieved from https://www.dilemata.net/revista/index.php/dilemata/article/view/412000042

Farrow, R. (2016). A Framework for the ethics of open education. Open Praxis, 8(2), pp. 93–109. http://dx.doi.org/10.5944/openpraxis.8.2.291

Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1). https://doi.org/10.1162/99608f92.8cd550d1

Geddes, B. (1990). How the cases you choose affect the answers you get: Selection bias in comparative politics. Political Analysis, 2(1), 131–150. https://doi.org/10.1093/pan/2.1.131

Gigerenzer, G., & Selten, R. (Eds.). (2002). Bounded rationality: The adaptive toolbox. MIT press.

Gitelman, L. (Ed.)(2013). Raw data is an oxymoron. MIT Press.

Goksel, N., & Bozkurt, A. (2019). Artificial intelligence in education: Current insights and future perspectives. In S. Sisman-Ugur, & G. Kurubacak (Eds.), Handbook of Research on Learning in the Age of Transhumanism (pp. 224–236). Hershey, IGI Global.

González-Bailón, S., Wang, N., Rivero, A., Borge-Holthoefer, J., &

Moreno, Y. (2012). Assessing the bias in communication networks sampled from twitter. https://arxiv.org/abs/1212.1684

Greller, W., & Drachsler, H. (2012). Translating Learning into Numbers: A Generic Framework for Learning Analytics. Educational Technology & Society, 15(3), 42–57. Retrieved from https://drive.google.com/file/d/1R84FXoT3W3X6C2JV1BBXha3tCoOQiQ7l/view

Hansen, J.D., & Reich, J. (2015). Democratizing education? Examining access and usage patterns in massive open online courses. Science, 350(6265), 1245–1248. https://doi.org/10.1126/science.aab3782

Hew, K.F., Qiao, C., & Tang, Y. (2018). Understanding student engagement in large-scale open online courses: A machine learning facilitated analysis of student’s reflections in 18 highly rated MOOCs. International Review of Research in Open and Distributed Learning, 19(3). https://doi.org/10.19173/irrodl.v19i3.3596

Hussain, M., Zhu, W., Zhang, W., Abidi, S. M. R., & Ali, S. (2019). Using machine learning to predict student difficulties from learning session data. Artificial Intelligence Review, 52(1), 381–407. https://doi.org/10.1007/s10462-018-9620-8

Houlden, S., & Veletsianos, G. (2019). A posthumanist critique of flexible online learning and its “anytime anyplace” claims. British Journal of Educational Technology, 50(3), 1005–1018. https://doi.org/10.1111/bjet.12779

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2

Johnson, C., & Newett, E. (2015). From idea to execution: Spotify’s discover weekly. Retrieved from https://www.slideshare.net/MrChrisJohnson/from-idea-to-execution-spotifys-discover-weekly/

Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), 1–12. https://doi.org/10.1177/2053951714528481

Kurilovas, E. (2019). Advanced machine learning approaches to personalise learning: learning analytics and decision making. Behaviour & Information Technology, 38(4), 410–421. https://doi.org/10.1080/0144929X.2018.1539517

Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824–2838. https://doi.org/10.1111/bjet.12861

Metcalf, J., Keller, E.F., & boyd, d. (2016). Perspectives on big data, ethics, and society. Retrieved from The Council for Big Data, Ethics, and Society website: https://bdes.datasociety.net/council-output/perspectives-on-big-data-ethics-and-society/

Michael, K., & Miller, K.W. (2013). Big data: New opportunities and new challenges. Computer, 46(6), 22–24. https://doi.ieeecomputersociety.org/10.1109/MC.2013.196

Monarrez, T. (2018). Segregated neighborhoods, segregated schools? Methodology. Washington, DC: Urban Institute. Retrieved from https://www.urban.org/sites/default/files/segregated_neighborhoods_methodology.pdf

Mousavi, S., & Gigerenzer, G. (2014). Risk, uncertainty, and heuristics. Journal of Business Research, 67(8), 1671-1678. https://doi.org/10.1016/j.jbusres.2014.02.013

Muller, J. Z. (2018). The tyranny of metrics. Princeton University Press.

Onnela, J. P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., et al. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences, 104(18), 7332–7336. https://doi.org/10.1073/pnas.0610245104

Orfield, G., & Lee, C. (2005). Why segregation matters: Poverty and educational inequality. Retrieved from https://civilrightsproject.ucla.edu/research/k-12-education/integration-and-diversity/why-segregation-matters-poverty-and-educational-inequality/orfield-why-segregation-matters-2005.pdf

Pasick, A. (2015, December 21). The magic that makes Spotify’s Discover Weekly playlists so damn good. Quartz. Retrieved from https://qz.com/571007/

Perrotta, C., & Selwyn, N. (2019). Deep learning goes to school: toward a relational understanding of AI in education. Learning, Media and Technology. https://doi.org/10.1080/17439884.2020.1686017

Pfeffer, J., Mayer, K., & Morstatter, F. (2018). Tampering with twitter’s sample API. EPJ Data Science, 7(50). https://doi.org/10.1140/epjds/s13688-018-0178-0

Pitcan, M. (2016, July 13). Student Data Privacy: An Overview [Blog post]. Retrieved from https://medium.com/enabling-connected-learning/student-data-privacy-an-overview-ea41ebd99095#.8jv3n83w2

Poel, M., Meyer, E.T., & Schroeder, R. (2018). Big data for policymaking: Great expectations, but with limited progress? Policy & Internet, 10(3), 347–367. https://doi.org/10.1002/poi3.176

Prabhakar, S., Spanakis, G., & Zaiane, O. (2017). Reciprocal recommender system for learners in massive open online courses (MOOCs). In H. Xie, E. Popescu, G. Hancke & B.F. Manjón (Eds.)(2017), Advances in Web-Based Learning–ICWL 2017 (pp. 157–167). Cham: Springer. https://doi.org/10.1007/978-3-319-66733-1_17

Reich, J. (2014, March 30). Big data MOOC research breakthrough: Learning activities lead to achievement [Blog post]. Retrieved from http://blogs.edweek.org/edweek/edtechresearcher/2014/03/big_data_mooc_research_breakthrough_learning_activities_lead_to_achievement.html

Reif, J.H. (n.d.). Rules for algorithm design [Lecture notes]. Retrieved from https://users.cs.duke.edu/~reif/courses/alglectures/skiena.lectures/lecture6.2.pdf

Romero, C., & Ventura, S. (2017). Educational data science in massive open online courses. Data Mining and Knowledge Discovery, 7(1). https://doi.org/10.1002/widm.1187

Ruipérez-Valiente, J.A., Halawa, S., Slama, R., & Reich, J. (2019). Using multi-platform learning analytics to compare regional and global MOOC learning in the Arab world. Computers & Education, 146. https://doi.org/10.1016/j.compedu.2019.103776

Ruths, D., & Pfeffer, J. (2014). Social media for large studies of behavior. Science, 346(6213), 1063–1064. https://doi.org/10.1126/science.346.6213.1063

Saurwein, F., Just, N., & Latzer, M. (2015). Governance of algorithms: options and limitations. Info, 17(6), 35–49. https://doi.org/10.1108/info-05-2015-0025

Sharma, R.C., Kawachi, P., & Bozkurt, A. (2019). The Landscape of Artificial Intelligence in Open, Online and Distance Education: Promises and Concerns [Editorial]. Asian Journal of Distance Education, 14(2). Retrieved from http://asianjde.org/ojs/index.php/AsianJDE/article/view/432

Siemens, G., Gasevic, D., Haythornthwaite, C., Dawson, S., Buckingham, S., Ferguson, R., Duval, E., Verbert, K., & Baker, R.S.J.d. (2011). Open Learning Analytics: an integrated & modularized platform. Retrieved from Society for Learning Analytics Research website: https://solaresearch.org/wp-content/uploads/2011/12/OpenLearningAnalytics.pdf

Sinders, C. (2019a, November 12). Reimagining privacy online through a spectrum of intimacy [Blog post]. Retrieved from https://www.are.na/blog/reimagining-privacy-online-through-gradients-of-intimacy

Sinders, C. (2019b). Making critical ethical software. In L. Bogers, & L. Chiappini (Eds.), The Critical Makers Reader:(Un) learning Technology

(pp. 86–94). Amsterdam: Institute of Network Cultures.

Sinders, C. (2019c). Data ingredients: A provocation towards making algorithms human readable. Retrieved from https://privacy.shorensteincenter.org/data-ingredients

Sirin, S.R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417–453. https://doi.org/10.3102/00346543075003417

Sloane, M., & Moss, E. (2019). AI’s social sciences deficit. Nature Machine Intelligence, 1(8), 330–331. https://doi.org/10.1038/s42256-019-0084-6

Smith, C.S. (2019, December 18). The machines are learning, and so are the students. The New York Times. Retrieved from https://www.nytimes.com/2019/12/18/education/artificial-intelligence-tutors-teachers.html

Sundar, S., & Singh, A. (2013). New heuristic approaches for the dominating tree problem. Applied Soft Computing, 13(12), 4695–4703. https://doi.org/10.1016/j.asoc.2013.07.014

Thille, C., Schneider, E., Kizilcec, R.F., Piech, C., Halawa, S.A., & Greene, D.K. (2014). The future of data-enriched assessment. Research & Practice in Assessment, 9(2), 5–16. Retrieved from http://www.rpajournal.com/dev/wp-content/uploads/2014/10/A1.pdf

Tufekci, Z. (2013). Big data: Pitfalls, methods and concepts for an emergent field. http://dx.doi.org/10.2139/ssrn.2229952

UNESCO. (2019, February 12). How can artificial intelligence enhance education? Retrieved from https://en.unesco.org/news/how-can-artificial-intelligence-enhance-education

US-ACM. (2017). Statement on algorithmic transparency and accountability. Retrieved from https://www.acm.org/binaries/content/assets/public-policy/2017_usacm_statement_algorithms.pdf

Uskov, V.L., Bakken, J.P., Byerly, A., & Shah, A. (2019). Machine learning-based predictive analytics of student academic performance in STEM education. In A.K. Ashmawy & S. Schreiter, Proceedings of 2019 IEEE Global Engineering Education Conference (pp. 1370–1376). Piscataway, NJ: IEEE.

Warnakulasooriya, R., & Black, A. (Eds.) (2018). Beyond the Hype of Big Data in Education. Practical lessons and illustrative examples of how to derive reliable insights in learning analytics. MacMillan Learning. Retrieved from http://prod-cat-files.macmillan.cloud/MediaResources/instructorcatalog/legacy/BFWCatalog/uploadedFiles/Beyond-the-Hype-of-Big-Data-in-Education.pdf

Zawacki-Richter, O., Marín, V.I., Bond, M, & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16. https://doi.org/10.1186/s41239-019-0171-0

Zhou, L. (2018, September 5). How to Build a Better Machine Learning Pipeline. Datanami. Retrieved from https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline/

Zwitter, A. (2014). Big data ethics. Big Data & Society, July-December, 1–6. https://doi.org/10.1177/2053951714559253

Publicado

2020-07-01

Cómo citar

Domínguez Figaredo, D. (2020). El encuadre pedagógico de los algoritmos educativos basados en datos. RIED-Revista Iberoamericana De Educación a Distancia, 23(2), 65–84. https://doi.org/10.5944/ried.23.2.26470

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.