Nivelación inteligente: estrategia de aprendizaje adaptativo con IA en educación superior
DOI:
https://doi.org/10.5944/ried.45482Palabras clave:
aprendizaje adaptativo, inteligencia artificial, nivelación, educación superiorResumen
La nivelación académica es uno de los principales retos de la educación superior, particularmente en las disciplinas STEM, un desafío que se ha intensificado tras el confinamiento académico y ante el cual los cursos remediales tradicionales no han mostrado los resultados esperados. Este estudio evaluó el impacto de una estrategia de aprendizaje adaptativo (EAA) orientada a reforzar conocimientos previos en 1.309 estudiantes de primer año inscritos en las unidades formativas de Pensamiento Computacional, Modelación Matemática Fundamental, Razonamiento Matemático y Pensamiento Matemático de una universidad privada en México. A diferencia de los enfoques remediales convencionales, la EAA ofrece una experiencia de aprendizaje flexible y centrada en el estudiante mediante breves módulos adaptativos integrados en los cursos regulares. Estos módulos, respaldados por una plataforma de inteligencia artificial, generan rutas personalizadas de aprendizaje, adaptan contenidos, producen analíticas y facilitan la toma de decisiones docentes basadas en datos. La investigación adoptó un enfoque mixto (CUAN > CUAL) y un diseño cuasiexperimental con muestras emparejadas para asegurar la comparabilidad entre grupos. Los resultados mostraron diferencias estadísticamente significativas en el desempeño académico a favor de los grupos experimentales respecto a los grupos control. Además, estudiantes y profesores evaluaron positivamente la EAA en términos de utilidad y experiencia de aprendizaje. Los hallazgos sugieren que una estrategia adaptativa, integral y mediada por tecnología constituye una alternativa eficaz para abordar la nivelación académica en cursos universitarios iniciales, ofreciendo ventajas sustanciales sobre los métodos remediales tradicionales.
Descargas
Citas
Allela, M. A., Ogange, B. O., Junaid, M. I., & Charles, P. B. (2020). Effectiveness of multimodal microlearning for in-service teacher training. Journal of Learning for Development, 7(3), 384-398. https://doi.org/10.56059/jl4d.v7i3.387
Cavanagh, T., Chen, B., Ait Maalem Lahcen, R., & Paradiso, J. R. (2020). Constructing a design framework and pedagogical approach for adaptive learning in higher education: A practitioner’s perspective. The International Review of Research in Open and Distributed Learning, 21(1), 173-195. https://www.irrodl.org/index.php/irrodl/article/view/4557
Creswell, J. W. (2015). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (5th ed.). Pearson.
Dagunduro, A. O., Chikwe, C. F., Ajuwon, O. A., & Ediae, A. A. (2024). Adaptive learning models for diverse classrooms: Enhancing educational equity. International Journal of Applied Research in Social Sciences, 6(9), 2228-2240. https://doi.org/10.51594/ijarss.v6i9.1588
du Plooy, E., Casteleijn, D., & Franzsen, D. (2024). Personalized adaptive learning in higher education: A scoping review of key characteristics and impact on academic performance and engagement. Heliyon, 10(21), e39630. https://doi.org/10.1016/j.heliyon.2024.e39630
Dubey, A., Chen, B., & Lloyd, J. (2023, 4 May). Personalized adaptive learning in algebra-based introductory physics courses at the University of Central Florida. WCET Frontiers. https://wcet.wiche.edu/frontiers/2023/05/04/personalized-adaptive-learning-in-algebra-based-intro-physics-courses-at-ucf/
Eau, G., Hoodin, D., & Musaddiq, T. (2022). Testing the effects of adaptive learning courseware on student performance: An experimental approach. Southern Economic Journal, 88(3), 1086-1118. https://doi.org/10.1002/soej.12547
Felder, R. M., & Brent, R. (2005). Understanding student differences. Journal of Engineering Education, 94(1), 57-72. https://doi.org/10.1002/j.2168-9830.2005.tb00829.x
Fernández-Morante, C., Cebreiro-López, B., Rodríguez-Malmierca, M.-J., & Casal-Otero, L. (2022). Adaptive learning supported by learning analytics for student teachers’ personalized training during in-school practices. Sustainability, 14(1), 124. https://doi.org/10.3390/su14010124
Filatova, E., Chen, Y.-W., & Li, H. (2023, June). Analysis of the COVID-19 impact on students’ enrollment, performance, and retention. In Proceedings of the 2023 ASEE Annual Conference & Exposition (Baltimore, MD, United States). https://doi.org/10.18260/1-2--42660
González-Beltrán, B. A., González-Brambila, S. B., Sánchez-Guerrero, L., Ardón-Pulido, I., & Figueroa-González, J. (2018). Estudio del impacto de un curso de nivelación en el desempeño de alumnos de ingeniería utilizando minería de datos educacional. Research in Computing Science, 147(5), 159-172. https://doi.org/10.13053/rcs-147-5-12
Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge. https://doi.org/10.4324/9780203887332
Hattie, J. (2017). Visible Learning Plus: 252 influences and effect sizes related to student achievement [PDF]. Visible Learning. https://visible-learning.org/wp-content/uploads/2018/03/VLPLUS-252-Influences-Hattie-ranking-DEC-2017.pdf
Hernandez Cardenas, L. S., Castano, L., Cruz Guzman, C., & Nigenda Alvarez, J. P. (2022). Personalised learning model for academic leveling and improvement in higher education. Australasian Journal of Educational Technology, 38(2), 70-82. https://doi.org/10.14742/ajet.7084
Howlin, C., & Lynch, D. (2014, October). Learning and academic analytics in the Realizeit system. In Proceedings of the World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (E-Learn 2014) (New Orleans, LA, United States). Association for the Advancement of Computing in Education (AACE). https://www.learntechlib.org/primary/p/148952/
Jing, Y., Zhao, L., Zhu, K., Wang, H., Wang, C., & Xia, Q. (2023). Research landscape of adaptive learning in education: A bibliometric study on research publications from 2000 to 2022. Sustainability, 15(4), 3115. https://doi.org/10.3390/su15043115
Kara, N., & Sevim, N. (2013). Adaptive learning systems: Beyond teaching machines. Contemporary Educational Technology, 4(2), 108-120. https://doi.org/10.30935/cedtech/6095
Klingbeil, N. W., Rattan, K. S., Raymer, M. L., Reynolds, D. B., Mercer, R., Kukreti, A., & Randolph, B. (2007, June). A national model for engineering mathematics education. In Proceedings of the 2007 ASEE Annual Conference & Exposition (Honolulu, HI, United States). https://doi.org/10.18260/1-2--2104
Koester, B. P., Grom, G., & McKay, T. A. (2016). Patterns of gendered performance difference in introductory STEM courses [Preprint]. arXiv. https://doi.org/10.48550/arXiv.1608.07565
Lasater, K., Smith, C., Pijanowski, J., & Brady, K. P. (2021). Redefining mentorship in an era of crisis: Responding to COVID-19 through compassionate relationships. International Journal of Mentoring and Coaching in Education, 10(2), 158-172. https://doi.org/10.1108/IJMCE-11-2020-0078
Li, T., Kirk, C., & Oseguera, L. (2023). Heterogeneous academic achievement profiles of initially STEM-intending students over the college years. Journal of College Student Development, 64(6), 728-735. https://doi.org/10.1353/csd.2023.a917027
Long, P., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 31-40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
López del Puerto, C., Bellido, C. M., Suárez, O. M., Alfaro, M., & Jiménez, M. A. (2021, July). Championing Hispanic student success following natural disasters in Puerto Rico. In Proceedings of the 2021 ASEE Annual Conference & Exposition (evento virtual). https://doi.org/10.18260/1-2--36790
McKenna, A., Agogino, A. M., & McMartin, F. (2000, October). What students say about learning physics, math, and engineering. In Proceedings of the 30th Annual Frontiers in Education Conference (Kansas City, MO, United States). IEEE. https://doi.org/10.1109/FIE.2000.897580
Miao, F., Holmes, W., Huang, R., & Zhang, H. (2021). Inteligencia artificial y educación: Guía para las personas a cargo de formular políticas. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000379376
Moskal, P., Carter, D., & Johnson, D. (2017, 4 January). 7 things you should know about... adaptive learning. EDUCAUSE Learning Initiative. https://library.educause.edu/resources/2017/1/7-things-you-should-know-about-adaptive-learning
Ochukut, S. A., Oboko, R. O., Miriti, E., & Maina, E. (2023). Research trends in adaptive online learning: Systematic literature review (2011–2020). Technology, Knowledge and Learning, 28, 431-448. https://doi.org/10.1007/s10758-022-09615-9
Olmos-López, O., Rincon-Flores, E. G., Mena, J., Román, O., & Camacho-López, E. (2023). Artificial intelligence as a way to improve educational practices. In M. Cebral-Loureda, E. G. Rincon-Flores, & G. Sanchez-Ante (Eds.), What AI can do: Strengths and limitations of artificial intelligence (pp. 135-151). Taylor & Francis. https://doi.org/10.1201/b23345-10
Press Trust of India. (2022, 3 May). Haryana govt to distribute over 5 lakh free tablets to Class 10, 12 students. The Indian Express. https://indianexpress.com/article/education/haryana-govt-to-distribute-over-5-lakh-free-tablets-to-class-10-12-students-from-may-5-7898959/
Rincon-Flores, E. G., Castano Sánchez, L., Guerrero Solís, S. L., Olmos López, O., Rodríguez Hernández, C. F., Castillo Lara, L. A., & Aldape Valdes, L. P. (2024). Improving the learning-teaching process through adaptive learning strategy. Smart Learning Environments, 11, 27. https://doi.org/10.1186/s40561-024-00314-9
Rincon-Flores, E. G., Rivera Vázquez, N., Castano Sánchez, L., Guerrero Solís, S. L., Aldape Valdes, L. P., & Castillo Lara, L. A. (2023, April). Improving face-to-face learning using an adaptive technology. In Proceedings of the 2023 IEEE Global Engineering Education Conference (EDUCON) (Kuwait City, Kuwait). IEEE. https://doi.org/10.1109/EDUCON54358.2023.10125276
Rockinson-Szapkiw, A., Herring Watson, J., Gishbaugher, J., & Wendt, J. L. (2021). A case for a virtual STEM peer-mentoring experience for racial and ethnic minority women mentees. International Journal of Mentoring and Coaching in Education, 10(3), 267-283. https://doi.org/10.1108/IJMCE-08-2020-0053
Ross, P. M., Scanes, E., Poronnik, P., Coates, H., & Locke, W. (2022). Understanding STEM academics’ responses and resilience to educational reform of academic roles in higher education. International Journal of STEM Education, 9(1), 11. https://doi.org/10.1186/s40594-022-00327-1
Sarıyalçınkaya, A. D., Karal, H., Altinay, F., & Altinay, Z. (2021). Reflections on adaptive learning analytics: Adaptive learning analytics. In A. Azevedo, J. M. Azevedo, J. O. Uhomoibhi, & E. Ossiannilsson (Eds.), Advancing the power of learning analytics and big data in education (pp. 61-84). IGI Global. https://doi.org/10.4018/978-1-7998-7103-3.ch003
Schaal, N., Chan, S. E., & Saint Clair, J. K. (2021, July). Insights gleaned from the GAIN peer-mentoring program pilot. In Proceedings of the 2021 ASEE Annual Conference & Exposition (evento virtual). https://peer.asee.org/insights-gleaned-from-the-gain-peer-mentoring-program-pilot
Seymour, E., & Hewitt, N. M. (1997). Talking about leaving: why undergraduates leave the sciences. Westview Press.
Shi, P., & Liu, W. (2025). Adaptive learning oriented higher educational classroom teaching strategies. Scientific Reports, 15, 15661. https://doi.org/10.1038/s41598-025-00536-y
Simon, P. D., & Zeng, L. M. (2024). Behind the scenes of adaptive learning: A scoping review of teachers’ perspectives on the use of adaptive learning technologies. Education Sciences, 14(12), 1413. https://doi.org/10.3390/educsci14121413
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1207/s15516709cog1202_4
Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296. https://doi.org/10.1023/A:1022193728205
Taha, H., Hanim, F., Johar, M., & Shah, M. (2015). Peer mentoring module: The effect of an intervention of academic mentoring program towards motivation and self-esteem among foundation students in Malaysia. Universal Journal of Psychology, 3(3), 80-83. https://doi.org/10.13189/ujp.2015.030304
Taylor, D. L., Yeung, M., & Bashet, A. Z. (2021). Personalized and adaptive learning. In J. Ryoo & K. Winkelmann (Eds.), Innovative learning environments in STEM higher education: Opportunities, challenges, and looking forward (pp. 17-34). Springer. https://doi.org/10.1007/978-3-030-58948-6_2
UNESCO. (2019). Consenso de Beijing sobre la inteligencia artificial y la educación [Documento de programa]. https://unesdoc.unesco.org/ark:/48223/pf0000368303
Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Harvard University Press.
Wang, S., Christensen, C., Cui, W., Tong, R., Yarnall, L., Shear, L., & Feng, M. (2023). When adaptive learning is effective learning: Comparison of an adaptive learning system to teacher-led instruction. Interactive Learning Environments, 31(2), 793–803. https://doi.org/10.1080/10494820.2020.1808794
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3-17. https://doi.org/10.1207/s15326985ep2501_2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Patricia Aldape-Valdés, Elvira G Rincón-Flores, Leticia Castaño, Sadie Guerrero

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las obras que se publican en esta revista están sujetos a los siguientes términos:
1. Los autores ceden de forma no exclusiva los derechos de explotación de los trabajos aceptados para su publicación en "RIED. Revista Iberoamericana de Educación a Distancia," y garantizan a la revista el derecho a ser la primera en publicar ese trabajo, igualmente, permiten a la revista distribuir obras publicadas bajo la licencia indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0). Se permite copiar y redistribuir el material en cualquier medio o formato, adaptar, remezclar, transformar y crear a partir del material para cualquier finalidad, incluso comercial. Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios.
3. Condiciones de auto-archivo. Se permite e incentiva a los autores a difundir electrónicamente la versión OnlineFirst (versión evaluada y aceptada para su publicación) de su obra antes de su publicación definitiva, siempre con referencia a su publicación en RIED, ya que favorece su circulación y difusión antes y así propiciar un posible aumento de su citación y alcance entre la comunidad académica. Color RoMEO: verde.

