Autopercepción y utilidad de la inteligencia artificial generativa en docentes en formación
DOI:
https://doi.org/10.5944/ried.45480Palabras clave:
inteligencia artificial generativa, ChatGPT, formación docente, autopercepción, utilidad, educaciónResumen
La irrupción de la Inteligencia Artificial Generativa (IA-Gen) en el ámbito educativo ofrece oportunidades, pero también plantea desafíos éticos y pedagógicos. En este contexto, resulta fundamental comprender la percepción de los docentes en formación hacia esta tecnología. Este estudio analizó la autopercepción de 174 docentes en formación sobre la IA-Gen aplicada a la educación. Se midieron siete dimensiones (Familiaridad, Relevancia, Habilidades prácticas, Barreras, Confianza, Impacto ético-social y Expectativas) en referencia a la IA-Gen y se valoró la utilidad de ChatGPT como herramienta para diseñar Situaciones de Aprendizaje (SdAs) tras una experiencia formativa con este sistema. Se calcularon estadísticos descriptivos, correlaciones de Spearman, se visualizó una red de correlaciones entre las siete dimensiones y se exploraron diferencias entre las titulaciones. Los resultados revelan niveles medios-altos de autopercepción con valoración muy positiva de la utilidad de ChatGPT y un alto nivel de satisfacción con su uso. La Confianza emergió como un nodo central en la red de correlaciones, vinculándose estrechamente con la Relevancia, Barreras, Impacto ético-social y Expectativas, lo que resalta su papel clave en la adopción de estas tecnologías. Asimismo, la mayoría de los participantes adoptó una actitud crítica ante la IA-Gen, contrastando las respuestas generadas por ChatGPT en lugar de aceptarlas pasivamente. En conclusión, aunque se observa una disposición favorable hacia la integración de la IA-Gen en educación, los futuros docentes demandan formación específica para su uso pedagógico y expresan preocupación por las implicaciones éticas de dicha integración.
Descargas
Citas
Al-Abdullatif, A. M. (2024). Modeling teachers’ acceptance of generative artificial intelligence use in higher education: The role of AI literacy, intelligent TPACK, and perceived trust. Education Sciences, 14(11), 1209. https://doi.org/10.3390/educsci14111209
Al-Abdullatif, A. M., & Alsubaie, M. A. (2024). ChatGPT in learning: Assessing students’ use intentions through the lens of perceived value and the influence of AI literacy. Behavioral Sciences, 14(9), 845. https://doi.org/10.3390/bs14090845
Alasadi, E. A., & Baiz, C. R. (2023). Generative AI in education and research: Opportunities, concerns, and solutions. Journal of Chemical Education, 100(8), 2965-2971. https://doi.org/10.1021/acs.jchemed.3c00323
Alba Pastor, C. (2022). Enseñar pensando en todos los estudiantes: El modelo de diseño universal para el aprendizaje (DUA). Ediciones SM.
Aravena Castillo, F. (2013). Developing the collaborative model in the initial formation: The autoperception of the professional performance of the beginner teacher in action. Estudios Pedagógicos, 39(1), 27-44. https://doi.org/10.4067/S0718-07052013000100002
Arias, F. G. (2012). El proyecto de investigación. Episteme.
Bayly-Castaneda, K., Ramírez-Montoya, M.-S., & Morita-Alexander, A. (2024). Crafting personalized learning paths with AI for lifelong learning: A systematic literature review. Frontiers in Education, 9, Article 1424386. https://doi.org/10.3389/feduc.2024.1424386
Bearman, M., & Ajjawi, R. (2023). Learning to work with the black box: Pedagogy for a world with artificial intelligence. British Journal of Educational Technology, 54(5), 1160-1173. https://doi.org/10.1111/bjet.13337
Buyakova, K. I., Dmitriev, Ya. A., Ivanova, A. S., Feshchenko, A. V., & Yakovleva, K. I. (2024). Students’ and teachers’ attitudes towards the use of tools with generative artificial intelligence at the university. The Education and Science Journal, 26(7), 160-193. https://doi.org/10.17853/1994-5639-2024-7-160-193
Carranza Alcántar, M. del R., Macías González, G. G., Gómez Rodríguez, H., Jiménez Padilla, A. A., & Jacobo Montes, F. M. (2024). Percepciones docentes sobre la integración de aplicaciones de IA generativa en el proceso de enseñanza universitario. REDU. Revista de Docencia Universitaria, 22(2), 21-40. https://doi.org/10.4995/redu.2024.22027
Currie, G. M. (2025). Generative artificial intelligence in nuclear medicine education. Journal of Nuclear Medicine Technology, 53(1), 72-79. https://doi.org/10.2967/jnmt.124.268323
Denny, P., Prather, J., Becker, B. A., Finnie-Ansley, J., Hellas, A., Leinonen, J., Luxton-Reilly, A., Reeves, B. N., Santos, E. A., & Sarsa, S. (2024). Computing education in the era of generative AI. Communications of the ACM, 67(2), 56-67. https://doi.org/10.1145/3624720
Espinoza-San Juan, J., Raby, M. D., & Sagredo-Lillo, E. (2024). Validación de un cuestionario sobre las percepciones y usos de la IA-Gen entre estudiantes de pedagogía. RISTI: Revista Ibérica de Sistemas e Tecnologias de Informação, (70), 574-585.
Gozalo-Brizuela, R., & Garrido-Merchán, E. E. (2024). A survey of generative AI applications. Journal of Computer Science, 20(8), 801-818. https://doi.org/10.3844/jcssp.2024.801.818
Haroud, S., & Saqri, N. (2025). Generative AI in higher education: Teachers’ and students’ perspectives on support, replacement, and digital literacy. Education Sciences, 15(4), 396. https://doi.org/10.3390/educsci15040396
Hernández-Sampieri, R., & Mendoza-Torres, C. P. (2023). Metodología de la investigación. McGraw-Hill.
Ishmuradova, I. I., Zhdanov, S. P., Kondrashev, S. V., Erokhova, N. S., Grishnova, E. E., & Volosova, N. Y. (2025). Pre-service science teachers’ perception on using generative artificial intelligence in science education. Contemporary Educational Technology, 17(3), ep579. https://doi.org/10.30935/cedtech/16207
Islam, G., & Greenwood, M. (2024). Generative artificial intelligence as hypercommons: Ethics of authorship and ownership. Journal of Business Ethics, 192(3), 659-663. https://doi.org/10.1007/s10551-024-05741-9
Ivanov, S., Soliman, M., Tuomi, A., Alkathiri, N. A., & Al-Alawi, A. N. (2024). Drivers of generative AI adoption in higher education through the lens of the theory of planned behaviour. Technology in Society, 77, 102521. https://doi.org/10.1016/j.techsoc.2024.102521
Jo, H. (2024). From concerns to benefits: A comprehensive study of ChatGPT usage in education. International Journal of Educational Technology in Higher Education, 21, 35. https://doi.org/10.1186/s41239-024-00471-4
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Kelly, A., Sullivan, M., & Strampel, K. (2023). Generative artificial intelligence: University student awareness, experience, and confidence in use across disciplines. Journal of University Teaching & Learning Practice, 20(6). https://doi.org/10.53761/1.20.6.12
Laupichler, M. C., Aster, A., Schirch, J., & Raupach, T. (2022). Artificial intelligence literacy in higher and adult education: A scoping literature review. Computers and Education: Artificial Intelligence, 3, 100101. https://doi.org/10.1016/j.caeai.2022.100101
Lozano, A., & Blanco Fontao, C. (2023). Is the education system prepared for the irruption of artificial intelligence? A study on the perceptions of students of primary education degree from a dual perspective: Current pupils and future teachers. Education Sciences, 13(7), 733. https://doi.org/10.3390/educsci13070733
Markos, A., Prentzas, J., & Sidiropoulou, M. (2024). Pre-service teachers’ assessment of ChatGPT’s utility in higher education: SWOT and content analysis. Electronics, 13(10), 1985. https://doi.org/10.3390/electronics13101985
Miao, F., & Cukurova, M. (2024). AI competency framework for teachers. UNESCO. https://doi.org/10.54675/ZJTE2084
Moorhouse, B. L., & Kohnke, L. (2024). The effects of generative AI on initial language teacher education: The perceptions of teacher educators. System, 122, 103290. https://doi.org/10.1016/j.system.2024.103290
Moorhouse, B. L., Wan, Y., Wu, C., Kohnke, L., Ho, T. Y., & Kwong, T. (2024). Developing language teachers’ professional generative AI competence: An intervention study in an initial language teacher education course. System, 125, 103399. https://doi.org/10.1016/j/system.2024.103399
Mouta, A., Torrecilla-Sánchez, E. M., & Pinto-Llorente, A. M. (2025). Comprehensive professional learning for teacher agency in addressing ethical challenges of AIED: Insights from educational design research. Education and Information Technologies, 30, 3343-3387. https://doi.org/10.1007/s10639-024-12946-y
Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W., & Chu, S. K. W. (2023). Teachers’ AI digital competencies and twenty-first century skills in the post-pandemic world. Educational Technology Research and Development, 71(1), 137-161. https://doi.org/10.1007/s11423-023-10203-6
Nyaaba, M., & Zhai, X. (2024). Generative AI professional development needs for teacher educators. Journal of AI, 8(1), 1-13. https://doi.org/10.61969/jai.1385915
Ogunleye, B., Zakariyyah, K. I., Ajao, O., Olayinka, O., & Sharma, H. (2024). A systematic review of generative AI for teaching and learning practice. Education Sciences, 14(6), 636. https://doi.org/10.3390/educsci14060636
Okunade, A. I. (2024). The role of artificial intelligence in teaching of science education in secondary schools in Nigeria. European Journal of Computer Science and Information Technology, 12(1), 57-67. https://doi.org/10.37745/ejcsit2013/vol12n15767
Omar, A., Shaqour, A. Z., & Khlaif, Z. N. (2024). Attitudes of faculty members in Palestinian universities toward employing artificial intelligence applications in higher education: Opportunities and challenges. Frontiers in Education, 9, 1414606. https://doi.org/10.3389/feduc.2024.1414606
Pinto-Llorente, A. M., Izquierdo-Álvarez, V., & Dolcet-Negre, M. M. (2025). Autopercepción y utilidad de la inteligencia artificial generativa en docentes en formación [Open Science Framework]. https://osf.io/c83dh
R Core Team. (2024). R: A language and environment for statistical computing (Version 4.4.3) [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org/
Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability, 15(15), Article 11524. https://doi.org/10.3390/su151511524
Saihi, A., Ben-Daya, M., & Hariga, M. (2025). The moderating role of technology proficiency and academic discipline in AI-chatbot adoption within higher education: Insights from a PLS-SEM analysis. Education and Information Technologies, 30, 5843-5881. https://doi.org/10.1007/s10639-024-13023-0
Sánchez Vera, M. del M. (2024). La inteligencia artificial como recurso docente: Usos y posibilidades para el profesorado. Educar, 60(1), 33-47. https://doi.org/10.5565/rev/educar.1810
Sánchez-Prieto, J. C., Izquierdo-Álvarez, V., del Moral-Marcos, M. T., & Martínez-Abad, F. (2025). Inteligencia artificial generativa para autoaprendizaje en educación superior: Diseño y validación de una máquina de ejemplos. RIED-Revista Iberoamericana de Educación a Distancia, 28(1), 59-81. https://doi.org/10.5944/ried.28.1.41548
Storey, V. C., Yue, W. T., Zhao, J. L., & Lukyanenko, R. (2025). Generative artificial intelligence: Evolving technology, growing societal impact, and opportunities for information systems research. Information Systems Frontiers. https://doi.org/10.1007/s10796-025-10581-7
Tai-Han, L., Hsing-Yi, C., Ming-Jr, J., Chih-Kai, C., Cherng-Lih, P., Guo-Shiou, L., Jyh-Cherng, Y., Ming-Shen, D., Cheng-Ping, Y., & Hung-Sheng, S. (2024). An advanced machine learning model for a web-based artificial intelligence-based clinical decision support system application: Model development and validation study. Journal of Medical Internet Research, 26, e56022. https://doi.org/10.2196/56022
UNESCO. (2023). Education 2030 agenda. https://www.unesco.org/en/digital-education/artificial-intelligence
Ventura-León, J. L., & Caycho-Rodríguez, T. (2017). El coeficiente omega: Un método alternativo para la estimación de la confiabilidad. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud, 15(1), 625-627.
Wang, K., Ruan, Q., Zhang, X., Fu, C., & Duan, B. (2024). Pre-service teachers’ GenAI anxiety, technology self-efficacy, and TPACK: Their structural relations with behavioral intention to design GenAI-assisted teaching. Behavioral Sciences, 14(5), 373. https://doi.org/10.3390/bs14050373
Wang, Y. Y., & Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634. https://doi.org/10.1080/10494820.2019.1674887
Whitbread, M., Hayes, C., Prabhakar, S., & Upsher, R. (2025). Exploring university staff’s perceptions of using generative artificial intelligence at university. Education Sciences, 15(3), 367. https://doi.org/10.3390/educsci15030367
Zhang, C., & Villanueva, L. E. (2023). Generative artificial intelligence preparedness and technological competence. International Journal of Education and Humanities, 11(2), 164-170. https://doi.org/10.54097/ijeh.v11i2.13753
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Ana María Pinto-Llorente, Vanessa Izquierdo-Álvarez, Marta M. Dolcet-Negre

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las obras que se publican en esta revista están sujetos a los siguientes términos:
1. Los autores ceden de forma no exclusiva los derechos de explotación de los trabajos aceptados para su publicación en "RIED. Revista Iberoamericana de Educación a Distancia," y garantizan a la revista el derecho a ser la primera en publicar ese trabajo, igualmente, permiten a la revista distribuir obras publicadas bajo la licencia indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0). Se permite copiar y redistribuir el material en cualquier medio o formato, adaptar, remezclar, transformar y crear a partir del material para cualquier finalidad, incluso comercial. Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios.
3. Condiciones de auto-archivo. Se permite e incentiva a los autores a difundir electrónicamente la versión OnlineFirst (versión evaluada y aceptada para su publicación) de su obra antes de su publicación definitiva, siempre con referencia a su publicación en RIED, ya que favorece su circulación y difusión antes y así propiciar un posible aumento de su citación y alcance entre la comunidad académica. Color RoMEO: verde.

