Efectos de la conciencia y confianza en la disposición estudiantil para usar ChatGPT: modelo TAM-ECM integrado

Autores/as

DOI:

https://doi.org/10.5944/ried.28.2.43476

Palabras clave:

ChatGPT, Modelo de Aceptación de la Tecnología (MAT), Modelado de Ecuaciones Estructurales (MES), satisfacción, conciencia, confianza

Resumen

Aunque el uso de ChatGPT en el ámbito educativo se ha expandido rápidamente en las universidades, se conoce poco sobre los factores que influyen en la intención de los estudiantes de utilizar esta herramienta para apoyar su aprendizaje. Este estudio aborda esa brecha integrando el Modelo de Aceptación de la Tecnología (TAM), ampliado con las variables de conciencia y confianza, y el Modelo de Confirmación de Expectativas (ECM), con los constructos de confirmación y satisfacción. El modelo propuesto profundiza en la comprensión de la disposición de los estudiantes a utilizar ChatGPT. Se recopilaron datos de 322 estudiantes universitarios, analizados mediante Modelado de Ecuaciones Estructurales (SEM) con AMOS. Los resultados revelaron que la conciencia influye significativamente y de forma positiva en la utilidad percibida (PU) y en la facilidad de uso percibida (PEU). Además, la confianza mostró un efecto positivo sobre la PU, pero no impactó de manera relevante la PEU. Asimismo, la PU, la PEU y la confirmación afectaron positivamente la satisfacción de los estudiantes, la cual incide en su intención de utilizar ChatGPT. Por otro lado, tanto la PU como la PEU tuvieron un efecto positivo significativo en la intención de uso (BI) de la herramienta. El estudio ofrece recomendaciones para desarrolladores, responsables de políticas educativas e instituciones académicas, orientadas a comprender y fomentar la adopción de ChatGPT. Además, aporta información valiosa para mejorar el diseño y la seguridad del sistema, favoreciendo una experiencia amigable para el usuario y promoviendo su uso en el ámbito educativo.

Descargas

Biografía del autor/a

Sultan Hammad Alshammari, University of Ha'il, UoH (Arabia Saudita)

Profesor Asociado en la Universidad de Ha’il, Arabia Saudita, se especializa en tecnología educativa. Su investigación abarca el uso de redes sociales en educación, realidad virtual, sistemas de gestión del aprendizaje, teorías de IS, SEM, AMOS y gamificación. Ha publicado más de 20 artículos en revistas indexadas en Scopus y Web of Science.

Abdullah Zaid Almankory, University of Ha'il, UoH (Arabia Saudita)

Profesor Asistente en el Departamento de Tecnología Educativa, Facultad de Educación, Universidad de Ha’il, Ciudad de Ha’il, Reino de Arabia Saudita.

   

Muna Eid Alrashidi, University of Ha'il, UoH (Arabia Saudita)

Profesora Asociada en el Departamento de Tecnología Educativa en la Universidad de Ha’il, Arabia Saudita. Doctora por la Universidad Umm Al-Qura, Arabia Saudita. Jefa del Departamento de Tecnología Educativa (Departamento Femenino) en la Universidad de Ha’il. Sus principales líneas de investigación incluyen IA en el aprendizaje, gamificación, aulas virtuales y el uso de LMS.

   

Citas

Abdalla, R. A. (2024). Examining awareness, social influence, and perceived enjoyment in the TAM framework as determinants of ChatGPT: Personalization as a moderator. Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100327. https://doi.org/10.1016/j.joitmc.2024.100327

Afthanorhan, A., Ghazali, P. L. y Rashid, N. (2021, May). Discriminant validity: A comparison of CBSEM and consistent PLS using Fornell & Larcker and HTMT approaches. Journal of Physics: Conference Series, 1874(1), 012085. https://doi.org/10.1088/1742-6596/1874/1/012085

Albayati, H. (2024). Investigating undergraduate students’ perceptions and awareness of using ChatGPT as a regular assistance tool: A user acceptance perspective study. Computers and Education: Artificial Intelligence, 6, Article 100203. https://doi.org/10.1016/j.caeai.2024.100203

Al‐Fraihat, D., Joy, M. y Sinclair, J. (2020). Evaluating e‐learning systems success: An empirical study. Computers in Human Behavior, 102, 67-86. https://doi.org/10.1016/j.chb.2019.08.004

Almulla, M. A. (2024). Investigating influencing factors of learning satisfaction in AI ChatGPT for research: University students' perspective. Heliyon, 10(11), e32220. https://doi.org/10.1016/j.heliyon.2024.e32220

Almuraqab, N. A. S. (2020). Shall universities in the UAE continue distance learning after the COVID-19 pandemic? Revealing students’ perspective. Social Science Research Network.

Al-Sayid, F. y Kirkil, G. (2023). Students’ web-based activities moderate the effect of human–computer interaction factors on their e-learning acceptance and success during the COVID-19 pandemic. International Journal of Human–Computer Interaction, 39(14), 2852-2875. https://doi.org/10.1080/10447318.2022.2087013

Alshammari, S. H. y Alshammari, R. A. (2024). An integration of expectation confirmation model and information systems success model to explore the factors affecting the continuous intention to utilise virtual classrooms. Scientific Reports, 14(1), Article 18491. https://doi.org/10.1038/s41598-024-69401-8

Alshammari, S. H. y Alshammari, M. H. (2024). Factors affecting the adoption and use of ChatGPT in higher education. International Journal of Information and Communication Technology Education (IJICTE), 20(1), 1-16. https://doi.org/10.4018/IJICTE.339557

Al-Sharafi, M. A., Al-Emran, M., Iranmanesh, M., Al-Qaysi, N., Iahad, N. A. y Arpaci, I. (2023). Understanding the impact of knowledge management factors on the sustainable use of AI-based chatbots for educational purposes using a hybrid SEM-ANN approach. Interactive Learning Environments, 31(10), 7491-7510. https://doi.org/10.1080/10494820.2022.2075014

Arpaci, I. (2016). Understanding and predicting students’ intention to use mobile cloud storage services. Computers in Human Behavior, 58, 150-157. https://doi.org/10.1016/j.chb.2015.12.067

Ashraf, R. U., Hou, F. y Ahmad, W. (2019). Understanding continuance intention to use social media in China: The roles of personality drivers, hedonic value, and utilitarian value. International Journal of Human-Computer Interaction, 35(13), 1216-1228. https://doi.org/10.1080/10447318.2018.1519145

Ashrafi, A., Zareravasan, A., Rabiee Savoji, S. y Amani, M. (2022). Exploring factors influencing students’ continuance intention to use the learning management system (LMS): A multi-perspective framework. Interactive Learning Environments, 30(8), 1475-1497. https://doi.org/10.1080/10494820.2020.1734028

Awang, P. (2015). SEM made simple: A gentle approach to learning structural equation modeling. MPWS Rich Publication.

Baek, T. H. y Kim, M. (2023). Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telematics and Informatics, 83, 102030. https://doi.org/10.2139/ssrn.4416087

Baidoo-Anu, D. y Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://doi.org/10.61969/jai.1337500

Bamigbola, A. A. y Adetimirin, A. E. (2020). Assessing determinants of perceived ease of use of institutional repositories by lecturers in Nigerian universities. International Information & Library Review, 52(2), 95-107. https://doi.org/10.1080/10572317.2019.1662261

Bansal, H. y Khan, R. (2018). A review paper on human computer interaction. International Journal of Advanced Research in Computer Science and Software Engineering, 8(4), 53. https://doi.org/10.23956/ijarcsse.v8i4.630

Basak, E., Gumussoy, C. A. y Calisir, F. (2015). Examining the factors affecting PDA acceptance among physicians: An extended technology acceptance model. Journal of Healthcare Engineering, 6(3), 399-418. https://doi.org/10.1260/2040-2295.6.3.399

Bernabei, M., Colabianchi, S., Falegnami, A. y Costantino, F. (2023). Students’ use of large language models in engineering education: A case study on technology acceptance, perceptions, efficacy, and detection chances. Computers and Education: Artificial Intelligence, 5, 100172. https://doi.org/10.1016/j.caeai.2023.100172

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25, 351-370. https://doi.org/10.2307/3250921

Bin-Nashwan, S. A., Sadallah, M. y Bouteraa, M. (2023). Use of ChatGPT in academia: Academic integrity hangs in the balance. Technology in Society, 75, 102370. https://doi.org/10.1016/j.techsoc.2023.102370

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., ... Amodei, D. (2020). Language models are few-shot learners [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2005.14165

Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S. y Sun, L. (2023). A comprehensive survey of AI-generated content (AIGC): A history of generative AI from GAN to ChatGPT [Preprint]. arXiv. https://arxiv.org/abs/2303.04226

Chen, C. C., Hsiao, K. L. y Li, W. C. (2020). Exploring the determinants of usage continuance willingness for location-based apps: A case study of bicycle-based exercise apps. Journal of Retailing and Consumer Services, 55, 102097. https://doi.org/10.1016/j.jretconser.2020.102097

Chen, S., Qiu, S., Li, H., Zhang, J., Wu, X., Zeng, W. y Huang, F. (2023). An integrated model for predicting pupils’ acceptance of artificially intelligent robots as teachers. Education and Information Technologies, 28(9), 11631-11654. https://doi.org/10.1007/s10639-023-11601-2

Choi, G., Nam, C. y Kim, S. (2019). The impacts of technology platform openness on application developers’ intention to continuously use a platform: From an ecosystem perspective. Telecommunications Policy, 43(2), 140-153. https://doi.org/10.1016/j.telpol.2018.04.003

Choung, H., David, P. y Ross, A. (2023). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human-Computer Interaction, 39(9), 1727-1739. https://doi.org/10.1080/10447318.2022.2050543

Cohen, J. (1988). Statistical power for the behavioural sciences. Lawrence Erlbaum.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Emenike, M. E. y Emenike, B. U. (2023). Was this title generated by ChatGPT? Considerations for artificial intelligence text-generation software programs for chemists and chemistry educators. Journal of Chemical Education, 100(4), 1413-1418. https://doi.org/10.1021/acs.jchemed.3c00063

Eppler, M., Ganjavi, C., Ramacciotti, L. S., Piazza, P., Rodler, S., Checcucci, E., Rivas, J. G., Kowalewski, K. F., Belenchón, I. R., Puliatti, S., Taratkin, M., Veccia, A., Baekelandt, L., Teoh, J. Y.-C., Somani, B. K., Wroclawski, M., Abreu, A., Porpiglia, F., Gill, I. S., ... Cacciamani, G. E. (2024). Awareness and Use of ChatGPT and Large Language Models: A Prospective Cross-sectional Global Survey in Urology. European Urology, 85(2), 146-153. https://doi.org/10.1016/j.eururo.2023.10.014

Esposito, C., Tamburis, O., Su, X. y Choi, C. (2020). Robust decentralised trust management for the internet of things by using game theory. Information Processing & Management, 57(6), 102308. https://doi.org/10.1016/j.ipm.2020.102308

Flavián, C., Pérez-Rueda, A., Belanche, D. y Casaló, L. V. (2022). Intention to use analytical artificial intelligence (AI) in services-the effect of technology readiness and awareness. Journal of Service Management, 33(2), 293-320. https://doi.org/10.1108/JOSM-10-2020-0378

Folkinshteyn, D. y Lennon, M. (2016). Braving Bitcoin: A technology acceptance model (TAM) analysis. Journal of Information Technology Case and Application Research, 18(4), 220-249. https://doi.org/10.1080/15228053.2016.1275242

Frieder, S., Pinchetti, L., Griffiths, R. R., Salvatori, T., Lukasiewicz, T., Petersen, P. y Berner, J. (2023). Mathematical capabilities of ChatGPT. En Advances in Neural Information Processing Systems (Vol. 36).

Hair, J. F., Jr., Black, W. C., Babin, B. J., Anderson, R. E. y Tatham, R. L. (2010). Multivariate data analysis (7th ed.). Pearson Prentice Hall.

Haleem, A., Javaid, M. y Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089

Hong, S., Thong, J. Y. y Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834. https://doi.org/10.1016/j.dss.2006.03.009

Huang, X. y Zhi, H. (2023). Factors influencing students’ continuance usage intention with virtual classroom during the COVID-19 pandemic: An empirical study. Sustainability, 15(5), 4420. https://doi.org/10.3390/su15054420

Ifinedo, P. (2007). Investigating the antecedents of continuance intention of course management systems use among Estonian undergraduates. International Journal of Information and Communication Technology Education (IJICTE), 3(4), 76-92. https://doi.org/10.4018/jicte.2007100107

Iku-Silan, A., Hwang, G. J. y Chen, C. H. (2023). Decision-guided chatbots and cognitive styles in interdisciplinary learning. Computers & Education, 201, 104812. https://doi.org/10.1016/j.compedu.2023.104812

Ismail, A. R. A., Fujita, S., Sakamoto, K., Takahashi, H. y Panessai, I. Y. (2024). Emerging trends and challenges in chatbot technology: A Japanese industry perspective. International Journal of Recent Technology and Applied Science (IJORTAS), 6(1), 46-60. https://doi.org/10.36079/lamintang.ijortas-0601.708

Joo, S. y Choi, N. (2016). Understanding users’ continuance intention to use online library resources based on an extended expectation-confirmation model. The Electronic Library, 34(4), 554-571. https://doi.org/10.1108/EL-02-2015-0033

Joo, Y. J., Park, S. y Shin, E. K. (2017). Students’ expectation, satisfaction, and continuance intention to use digital textbooks. Computers in Human Behavior, 69, 83-90. https://doi.org/10.1016/j.chb.2016.12.025

Kashive, N., Powale, L. y Kashive, K. (2020). Understanding user perception toward artificial intelligence (AI) enabled e-learning. The International Journal of Information and Learning Technology, 38(1), 1-19. https://doi.org/10.1108/IJILT-05-2020-0090

Kelly, S., Kaye, S. A. y Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. https://doi.org/10.1016/j.tele.2022.101925

Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford Publications.

Li, K. (2023). Determinants of college students’ actual use of AI-based systems: An extension of the technology acceptance model. Sustainability, 15(6), 5221. https://doi.org/10.3390/su15065221

Limayem, M. y Cheung, C. M. (2008). Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232. https://doi.org/10.1016/j.im.2008.02.005

Liu, K. y Tao, D. (2022). The roles of trust, personalization, loss of privacy, and anthropomorphism in public acceptance of smart healthcare services. Computers in Human Behavior, 127, 107026. https://doi.org/10.1016/j.chb.2021.107026

Lowry, P. B. y Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123-146. https://doi.org/10.1109/TPC.2014.2312452

Lund, B. D. y Wang, T. (2023). Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Library Hi Tech News, 40(3), 26-29. https://doi.org/10.1108/LHTN-01-2023-0009

Maheshwari, G. (2023). Factors influencing students’ intention to adopt and use ChatGPT in higher education: A study in the Vietnamese context. Education and Information Technologies, 1-29. https://doi.org/10.1007/s10639-023-12333-z

Mohr, S. y Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: An application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22(6), 1816-1844. https://doi.org/10.1007/s11119-021-09814-x

Mouakket, S. (2015). Factors influencing continuance intention to use social network sites: The Facebook case. Computers in Human Behavior, 53, 102-110. https://doi.org/10.1016/j.chb.2015.06.045

Mutahar, A. M., Daud, N. M., Thurasamy, R., Isaac, O. y Abdulsalam, R. (2018). The mediating of perceived usefulness and perceived ease of use: The case of mobile banking in Yemen. International Journal of Technology Diffusion, 9(2), 21-40. https://doi.org/10.4018/IJTD.2018040102

Nikou, S. A. y Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers & Education, 109, 56-73. https://doi.org/10.1016/j.compedu.2017.02.005

Niu, B. y Mvondo, G. F. N. (2024). I am ChatGPT, the ultimate AI Chatbot! Investigating the determinants of users’ loyalty and ethical usage concerns of ChatGPT. Journal of Retailing and Consumer Services, 76, 103562. https://doi.org/10.1016/j.jretconser.2023.103562

Nja, C. O., Idiege, K. J., Uwe, U. E., Meremikwu, A. N., Ekon, E. E., Erim, C. M., Ukah, J. U., Eyo, E. O., Anari, M. I. y Cornelius-Ukpepi, B. U. (2023). Adoption of artificial intelligence in science teaching: From the vantage point of the African science teachers. Smart Learning Environments, 10(42). https://doi.org/10.1186/s40561-023-00261-x

OpenAI. (2023). GPT-4 technical report. Cornell University. https://doi.org/10.48550/arXiv.2303.08774

Park, E. (2020). User acceptance of smart wearable devices: An expectation-confirmation model approach. Telematics and Informatics, 47, 101318. https://doi.org/10.1016/j.tele.2019.101318

Patel, S. B. y Lam, K. (2023). ChatGPT: The future of discharge summaries? The Lancet Digital Health, 5(3), e107-e108. https://doi.org/10.1016/S2589-7500(23)00021-3

Pillai, R., Sivathanu, B., Metri, B. y Kaushik, N. (2023). Students’ adoption of AI-based teacher-bots (T-bots) for learning in higher education. Information Technology & People. Advance online publication. https://doi.org/10.1108/ITP-02-2021-0152

Polyportis, A. (2024). A longitudinal study on artificial intelligence adoption: Understanding the drivers of ChatGPT usage behavior change in higher education. Frontiers in Artificial Intelligence, 6, 1324398. https://doi.org/10.3389/frai.2023.1324398

Rahi, S., Alghizzawi, M. y Ngah, A. H. (2023). Factors influence user’s intention to continue use of e-banking during COVID-19 pandemic: The nexus between self-determination and expectation confirmation model. EuroMed Journal of Business, 18(3), 380-396. https://doi.org/10.1108/EMJB-12-2021-0194

Rahlina, N. A., Awangb, Z., Afthanorhanc, A. y Aimrand, N. (2019). The art of covariance based analysis in behaviour-based safety performance study using confirmatory factor analysis: Evidence from SMEs. Measurement, 7(10).

Rahman, M. S., Sabbir, M. M., Zhang, J., Moral, I. H. y Hossain, G. M. S. (2023). Examining students’ intention to use ChatGPT: Does trust matter? Australasian Journal of Educational Technology, 51, 51-71. https://doi.org/10.14742/ajet.8956

Ramadhan, A., Hidayanto, A. N., Salsabila, G. A., Wulandari, I., Jaury, J. A. y Anjani, N. N. (2022). The effect of usability on the intention to use the e-learning system in a sustainable way: A case study at Universitas Indonesia. Education and Information Technologies, 1-34.

Rudolph, J., Tan, S. y Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning and Teaching, 6(1), 342-363. https://doi.org/10.37074/jalt.2023.6.1.9

Sarstedt, M., Ringle, C. M. y Hair, J. F. (2014). PLS-SEM: Looking back and moving forward. Long Range Planning, 47(3), 132-137. https://doi.org/10.1016/j.lrp.2014.02.008

Sarstedt, M., Ringle, C. M. y Hair, J. F. (2021). Partial least squares structural equation modeling. En Handbook of Market Research (pp. 587-632). Springer International Publishing. https://doi.org/10.1007/978-3-319-57413-4_15

Schulman, J., Zoph, B., Kim, C., Hilton, J., Menick, J., Weng, J., Ceron Uribe, J. F., Fedus, L., Metz, L., Pokorny, M., Gontijo Lopes, R., Zhao, S., Vijayvergiya, A., Sigler, E., Perelman, A., Voss, C., Heaton, M., Parish, J., … Hesse, C. (2022, November 30). Optimizing language models for dialogue. OpenAI.

Sekaran, U. y Bougie, R. (2016). Research Methods for Business: A Skill-Building Approach. 7th Edition, Wiley & Sons, West Sussex.

Sestino, A. y D’Angelo, A. (2023). My doctor is an avatar! The effect of anthropomorphism and emotional receptivity on individuals’ intention to use digital-based healthcare services. Technological Forecasting and Social Change, 191, Article 122505. https://doi.org/10.1016/j.techfore.2023.122505

Shuhaiber, A. y Mashal, I. (2019). Understanding users’ acceptance of smart homes. Technology in Society, 58, 101110. https://doi.org/10.1016/j.techsoc.2019.01.003

Stone, R. W. y Baker-Eveleth, L. (2013). Students’ expectation, confirmation, and continuance intention to use electronic textbooks. Computers in Human Behavior, 29(3), 984-990. https://doi.org/10.1016/j.chb.2012.12.007

Tam, C., Santos, D. y Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile apps: Extending the expectation confirmation model. Information Systems Frontiers, 22, 243-257. https://doi.org/10.1007/s10796-018-9864-5

Torrent-Sellens, J., Jiménez-Zarco, A. I. y Saigí-Rubió, F. (2021). Do people trust in robot-assisted surgery? Evidence from Europe. International Journal of Environmental Research and Public Health, 18(23), 12519. https://doi.org/10.3390/ijerph182312519

Tung, L. (2023). ChatGPT can write code. Now researchers say it’s good at fixing bugs, too. ZDNet.

van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R. y Bockting, C. L. (2023). ChatGPT: Five priorities for research. Nature, 614(7947), 224-226. https://doi.org/10.1038/d41586-023-00288-7

Venkatesh, V. y Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926

Wandira, R., Fauzi, A. y Nurahim, F. (2024). Analysis of factors influencing behavioral intention to use cloud-based academic information system using extended technology acceptance model (TAM) and expectation-confirmation model (ECM). Journal of Information Systems Engineering and Business Intelligence, 10(2), 179-190. https://doi.org/10.20473/jisebi.10.2.179-190

Xu, J., Zhang, X., Li, H., Yoo, C. y Pan, Y. (2023). Is everyone an artist? A study on user experience of AI-based painting system. Applied Sciences, 13(11), 6496. https://doi.org/10.3390/app13116496

Yu, C., Yan, J. y Cai, N. (2024). ChatGPT in higher education: Factors influencing ChatGPT user satisfaction and continued use intention. Frontiers in Education, 9, Article 1354929. https://doi.org/10.3389/feduc.2024.1354929

Yusoff, M. N. H. B., Zainol, F. A., Hafifi Ridzuan, R., Ismail, M. y Afthanorhan, A. (2021). Psychological traits and intention to use e-commerce among rural micro-entrepreneurs in Malaysia. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1827-1843. https://doi.org/10.3390/jtaer16050102

Publicado

2025-04-07

Cómo citar

Alshammari, S. H., Almankory, A. Z., & Alrashidi, M. E. (2025). Efectos de la conciencia y confianza en la disposición estudiantil para usar ChatGPT: modelo TAM-ECM integrado. RIED-Revista Iberoamericana De Educación a Distancia, 28(2). https://doi.org/10.5944/ried.28.2.43476

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.