Self-confidence judgments in mental rotation ability in sixth graders

Authors

  • Laura María Fernández Méndez URJC
  • María Trinidad Maldonado UNED
  • María José Contreras UNED

DOI:

https://doi.org/10.5944/ap.21.1-2.40238

Keywords:

Metacognition, Spatial ability, Mental rotation, self-confidence judgments, Primary school children

Abstract

Monitoring self-performance is a significant metacognitive process in students’ learning, helping students to adjust their performance in the tasks they are carrying out. However, to date, studies that evaluate these processes in primary school children, more specifically in spatial tasks, are scarce. The aim of this study is to analyze the self-confidence judgments and calibration index in two mental rotation tasks considering difficulty level. A total of 40 sixth graders, children aged between 11 and 12 years old applied a 5-point scale to evaluate, item by item, the confidence of their responses in two different mental rotation tasks (with high and low difficulty). It was calculated an index of calibration (Brier Score) as well for each task. The results indicated similar levels of confidence judgments in spatial tasks of varying difficulty where the calibration was different having the students more precision in easy test in comparison with difficult test. This evidence was discussed highlighting the importance of self-monitoring spatial performance strengthening the development of strategies that could regulate performance at this stage in this type of spatial tasks

Downloads

Download data is not yet available.

Author Biographies

María Trinidad Maldonado, UNED

Department of Basic Psychology

María José Contreras, UNED

Department of Basic Psychology I

References

Ackerman, R. & Thompson, V. A. (2017). Meta-reasoning: Monitoring and Control of Thinking and Reasoning. Trends in Cognitive Sciences. 21, 607–617. https://doi.org/10.1016/j.tics.2017.05.004

Ariel, R., Lembeck, N. A., Moffat, S., & Hertzog, C. (2018). Are there Sex Differences in Confidence and Metacognitive Monitoring Accuracy for Everyday, Academic, and Psychometrically Measured Spatial Ability? Intelligence, 70, 42–51. https://doi.org/10.1016/j.intell.2018.08.001

Ariel, R. & Moffat, S. D. (2018). Age-related Similarities and Differences in Monitoring Spatial Cognition. Neuropsychology, development, and cognition. Section B, Aging, Neuropsychology and Cognition, 25(3), 351–377. https://doi.org/10.1080/13825585.2017.1305086

Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, Techniques, and Illusions. Annual Review of Psychology, 64, 417–444. https://doi.org/10.1146/annurev-psych-113011-143823

Chevalier, N. & Blaye, A. (2016). Metacognitive Monitoring of Executive Control Engagement during Childhood. Child Development, 87(4), 1264–1276. https://doi.org/10.1111/cdev.12537

Contreras, M. J., Meneghetti, C., Uttal, D. H., Fernández-Méndez, L. M., Rodán, A., & Montoro, P. R. (2020). Monitoring the own Spatial Thinking in Second Grade of Primary Education in a Spanish School: Preliminary Study Analyzing Gender Differences. Education Sciences, 10(9), Article 237. https://doi.org/10.3390/educsci10090237

Cooke-Simpson, A. & Voyer, D. (2007). Confidence and Gender Differences on the Mental Rotations Test. Learning and Individual Differences, 17(2), 181–186. https://doi.org/10.1016/j.lindif.2007.03.009

Dentakos, S., Saoud, W., Ackerman, R., & Toplak, M. E. (2019). Does Domain Matter? Monitoring Accuracy across Domains. Metacognition and Learning, 14(3), 413–436. https://doi.org/10.1007/s11409-019-09198-4

Desender, K. & Sasanguie, D. (2022). Math Anxiety Relates Positively to Metacognitive Insight into Mathematical Decision Making. Psychological Research, 86, 1001–1013. https://doi.org/10.1007/s00426-021-01511-8

Desoete, A. & Roeyers, H. (2003). Can off-line Metacognition Enhance Mathematical Problem Solving? Journal of Educational Psychology, 95(1), 188–200. https://doi.org/10.1037/0022-0663.95.1.188

Dignath, C., Büttner, G., & Langfeldt, H. (2008). How Can Primary School Students Learn Self-Regulated Learning Strategies most Effectively? A Meta-analysis on self-Regulation Training Programmes. Educational Research Review, 3(2), 101–129. https://doi.org/10.1016/j.edurev.2008.02.003

Double, K. S. & Birney, D. P. (2019). Reactivity to Measures of Metacognition. Frontiers in Psychology, 10, Article 2755. https://doi.org/10.3389/fpsyg.2019.02755

Dunlosky, J. & Thiede, K. W. (2013). Four Corner- Stones of Calibration Research: Why Understanding Students’ Judgments Can Improve their Achievement. Learning and Instruction, 24, 58–61. https://doi.org/0.1016/j.learninstruc.2012.05.002

Erickson, S. & Heit, E. (2015). Metacognition and Confidence: Comparing Math to other Academic Subjects. Frontiers in Psychology, 6, Article 742. https://doi.org/10.3389/fpsyg.2015.00742

Fleming, S. M. & Dolan, R. J. (2012). The Neural Basis of Metacognitive Ability. Philosophical Transactions of the Royal Society of London, 367(1594), 1338–1349. https://doi.org/10.1098/rstb.2011.0417

Fleming, S. M. & Lau, H. C. (2014). How to Measure Metacognition. Frontiers in Human Neuroscience, 8, Article 443. https://doi.org/10.3389/fnhum.2014.00443

Gimeno, P. (2014). Intervención en las aptitudes visoespaciales y su relación con las matemáticas y la memoria operativa en estudiantes de 2º curso de Educación Primaria Obligatoria (EPO) [Intervention in Visuospatial Skills and their Relationship with Mathematics and Working Memory in 2nd-grade Compulsory Primary Education Students (EPO)]. [Master's thesis, National University of Distance Education]. UNED Repository. https://hdl.handle.net/20.500.14468/24628

Hacker, D. J., Dunlosky, J., & Graesser, A. C. (Eds.). (2009). Handbook of Metacognition in Education. Routledge. https://doi.org/10.4324/9780203876428

IBM Corporation. (2011). SPSS Statistics for Windows, Version 20.0. Author.

Jacobse, A. E. & Harskamp, E. G. (2012). Towards Efficient Measurement of Metacognition in Mathematical Problem Solving. Metacognition Learning, 7, 133–149. https://doi.org/10.1007/s11409-012-9088-x

Juslin, P., Winman, A., & Olsson, H. (2000). Naive Empiricism and Dogmatism in Confidence Research: A Critical Examination of the Hard–Easy Effect. Psychological Review, 107(2), 384–396. https://doi.org/10.1037/0033-295X.107.2.384

Kleitman, S. & Moscrop, T. (2010). Self-confidence and Academic Achievements in Primary-School Children: Their Relationships and Links to Parental Bonds, Intelligence, Age, and Gender. In A. Efklides & P. Misailidi (Eds.), Trends and Prospects in Metacognition Research (pp. 293–326). Springer Science + Business Media. https://doi.org/10.1007/978-1-4419-6546-2_14

Krebs, S. S. & Roebers, C. M. (2012). The Impact of Retrieval Processes, Age, General Achievement Level, and Test Scoring Scheme for Children’s Metacognitive Monitoring and Controlling. Metacognition and Learning, 7(2), 75–90. https://doi.org/10.1007/s11409-011-9079-3

Kruger, J. & Dunning, D. (1999). Unskilled and Unaware of it: How Difficulties in Recognizing one's Own Incompetence Lead to inflated Self-Assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134. https://doi.org/10.1037/0022-3514.77.6.1121

Koriat, A. (1995). Dissociating Knowing and the Feeling of Knowing: Further Evidence for the Accessibility Model. Journal of Experimental Psychology: General, 124(3), 311–333. https://doi.org/10.1037/0096-3445.124.3.311

Lichtenstein, S. & Fischhoff, B. (1977). Do those who Know more also Know more about how much they Know? Organizational Behavior and Human Performance, 20(2), 159–183. https://doi.org/10.1016/0030-5073(77)90001-0

Linn, M. C. & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A meta-analysis. Child Development, 56 (6), 1479–1498. https://doi.org/10.1111/j.1467-8624.1985.tb00213.x

Lohman, D. F. (1996). Spatial Ability and G. In I. Dennis & P. Tapsfield (Eds.), Human Abilities: Their Nature and Measurement (pp. 97–116). Lawrence Erlbaum. https://doi.org/10.4324/9780203774007

McIntosh R. D., Fowler E. A., Lyu T., & Della Sala S. (2019). Wise up: Clarifying the Role of Metacognition in the Dunning-Kruger Effect. Journal of Experimental Psychology: General, 148(11), 1882–1897. https://doi.org/10.1037/xge0000579

Montoya, D., Orrego, M., Puente, A., & Tamayo, O. (2021). Metacognitive Judgments as an Emerging Research Field. A Systematic Review (2016-2020). Revista Latinoamericana de Estudios Educativos, 17(1), 188–223. https://doi.org/17151/rlee.2021.17.1.10

Murayama, K., Pekrun, R., Lichtenfeld, S., & vom Hofe, R. (2013). Predicting Long-Term Growth in Students’ Mathematics Achievement: The Unique Contributions of Motivation and Cognitive Strategies. Child Development, 84, 1475–1490. https://doi.org/10.1111/cdev.12036

Murphy, A. H. (1973). A New Vector Partition of the Probability Score. Journal of Applied Meteorology, 12, 595–600. http://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2

Nelson, T. O. & Narens, L. (1980). Norms of 300 General-Information Questions: Accuracy of Recall, Latency of Recall, and Feeling-of-Knowing Ratings. Journal of Verbal Learning and Verbal Behavior, 19(3), 338–368. https://doi.org/10.1016/S0022-5371(80)90266-2

Nelson, T. O. & Narens, L. (1990). Metamemory: A Theoretical Framework and New Findings. In G. Bower (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (pp. 125–173). Academic Press. https://doi.org/10.1016/S0079-7421(08)60053-5

Neys, W. D. & Fereman, V. (2013). Development of Heuristic Bias Detection in Elementary School. Developmental Psychology, 49(2), 258–269. https://doi.org/10.1037/a0028320

Nietfeld, J. L., Cao, L., & Osborne, J. W. (2006). The Effect of Distributed Monitoring Exercises and Feed-back on Performance, Monitoring Accuracy, and Self-Efficacy. Metacognition and Learning, 1(2), 159–179. https://doi.org/10.1007/s10409-006-9595-6

Ohtani, K. & Hisasaka, T. (2018). Beyond Intelligence: A Meta-Analytic Review of the Relationship among Metacognition, Intelligence, and Academic Performance. Metacognition and Learning, 13, 179–212. https://doi.org/10.1007/s11409-018-9183-8

Pallier, G., Wilkinson, R., Danthiir, V., Kleitman, S., Knezevic, G., Stankov, L., & Roberts, R. D. (2002). The Role of Individual Differences in the Accuracy of Confidence Judgments. The Journal of General Psychology, 129(3), 257–299. https://doi.org/10.1080/00221300209602099

Rinne, L. F. & Mazzocco, M. M. (2014). Knowing Right from Wrong in Mental Arithmetic Judgments: Calibration of Confidence Predicts the Development of Accuracy. PLoS One, 9(7), Article e98663. https://doi.org/10.1371/journal.pone.0098663

Rodán, A., Contreras, M. J., Elosúa, M. R., & Gimeno, P. (2016). Experimental but not Sex Differences of a Mental Rotation Training Program on Adolescents. Frontiers in Psychology, 7, Article 1050. https://doi.org/10.3389/fpsyg.2016.01050

Rodán, A., Gimeno, P., Elosúa, M. R., Montoro, P. R., & Contreras, M. J. (2019). Boys and Girls Gain in Spatial, but not in Mathematical Ability after Mental Rotation Training in Primary Education. Learning and Individual Differences, 70, 1–11. https://doi.org/10.1016/j.lindif.2019.01.001

Roebers, C. M., Mayer, B., Steiner, M., Bayard, N. S., & van Loon, M. H. (2019). The Role of Children's Metacognitive Experiences for Cue Utilization and Monitoring Accuracy: A Longitudinal Study. Developmental Psychology, 55(10), 2077–2089. https://doi.org/10.1037/dev0000776

Schneider, W. & Löffler, E. (2016). The Development of Metacognitive Knowledge in Children and Adolescents. In J. Dunlosky & S.K. Tauber (Eds), The Oxford Handbook of Metamemory (pp. 491–518). Oxford University Press.

Schraw, G. (2009). A Conceptual Analysis of Five Measures of Metacognitive Monitoring. Metacognition and Learning, 4(1), 33–45. https://doi.org/10.1007/s11409-008-9031-3

Schraw, G. & Moshman, D. (1995). Metacognitive Theories. Educational Psychology Review, 7, 351–371. https://doi.org/10.1007/BF02212307

Shin, H., Bjorklund, D. F., & Beck, E. F. (2007). The Adaptive Nature of Children's Overestimation in a Strategic Memory Task. Cognitive Development, 22(2), 197–212. https://doi.org/10.1016/j.cogdev.2006.10.001

Soderstrom, N. C., Yue, C. L., & Bjork, E. L. (2016). Metamemory and Education. In J. Dunlosky & S. K. Tauber (Eds.), The Oxford handbook of Metamemory (pp. 197–215). Oxford University Press.

Song, J. H., Loyal, S., & Lond, B. (2021). Metacognitive Awareness Scale, Domain Specific (MCAS-DS): Assessing Metacognitive Awareness During Raven’s Progressive Matrices. Frontiers in Psychology, 11, Article 3683. https://doi.org/10.3389/fpsyg.2020.607577

Van der Stel, M. & Veenman, M. V. J. (2008). Relation between Intellectual Ability and Metacognitive Skill Fulness as Predictors of Learning Performance of Young Students Performing Tasks in Different Domains. Learning Individual Different 18, 128–134. https://doi.org/10.1016/j.lindif.2007.08.003

Van Loon, M. H. & Roebers, C. M. (2017). Effects of Feedback on Self‐Evaluations and Self‐Regulation in Elementary School. Applied Cognitive Psychology, 31(5), 508–519. https://doi.org/10.1002/acp.3347

Wall, J. L., Thompson, C. A., Dunlosky, J., & Merriman, W. E. (2016). Children Can Accurately Monitor and Control their Number-Line Estimation Performance. Developmental Psychology, 52(10), Article 1493. https://doi.org/10.1037/dev0000180

Zelazo, P. D. (2004). The Development of Conscious Control in Childhood. Trends in Cognitive Sciences, 8(1), 12–17. https://doi.org/10.1016/j.tics.2003.11.001

Downloads

Published

2024-12-31

How to Cite

Fernández Méndez, L. M., Maldonado, M. T. ., & Contreras, M. J. . (2024). Self-confidence judgments in mental rotation ability in sixth graders. Acción Psicológica, 21(1-2), 5–18. https://doi.org/10.5944/ap.21.1-2.40238

Issue

Section

Artículos de temática libre [Selection of articles]

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)