Digitalisation of the University by Covid-19: Impact on Students' Learning and Psychosocial Factors
DOI:
https://doi.org/10.5944/ried.25.2.32660Keywords:
Virtual teaching, e-learning, higher education, Covid-19, education 4.0Abstract
The academic sphere has been particularly affected by Covid-19 due to the limitations of mobility and social distancing facilitated by the increase in contagions during the various waves that have occurred in Spain, which has led to the digitalisation of teaching in most Spanish universities. The aim of this study was to analyse the influence of Covid-19 on the learning of university students in Andalusia, and how psychosocial (fear of Covid-19, life satisfaction, stress, uncertainty), learning (learning strategies, motivation, study time and habits, facilitating conditions, self-regulation) and socio-demographic factors (gender, age, course, address, scholarship, future employment, mobility, dropout) have been influenced. For this purpose, a cross-sectional study design was applied based on the distribution of an online survey. A total of 1873 university students, aged between 17 and 59 years (M = 22.42, SD = 4.45) participated in the study. The results revealed that: 1) the pandemic has affected students differently depending on the population strata to which they belong; 2) there has been an increase in the levels of stress and uncertainty affecting students' mental health; 3) academic dropout is a factor that has been and is present during the incidence of the pandemic; 4) learning has been affected by the pandemic due to fear and uncertainty which has had a significant impact on students' motivation and self-regulation. Finally, the future lines of research of this work are discussed, highlighting the richness of the data obtained to advance knowledge on the impact of Covid-19 on university learning.
FULL ARTICLE:
https://revistas.uned.es/index.php/ried/article/view/32660/25354
Downloads
References
Adefris, D., y Moges, B. (2021). The psychological impact and coping of Covid-19 pandemic among Arsi University students – Ethiopia. Current Psychology, 1-7. https://doi.org/10.1007/s12144-021-01886-2
Ahorsu, D. K., Lin, C. Y., Imani, V., Saffari, M., Griffiths, M. D., y Pakpour, A. H. (2020). The Fear of COVID-19 Scale: Development and Initial Validation. International Journal of Mental Health and Addiction, 1-10. https://doi.org/10.1007/s11469-020-00270-8
Alemany-Arrebola, I., Rojas-Ruiz, G., Granda-Vera, J., y Mingorance-Estrada, Á. C. (2020). Influence of COVID-19 on the Perception of Academic Self-Efficacy, State Anxiety, and Trait Anxiety in College Students. Frontiers in Psychology, 11, 570017. https://doi.org/10.3389/fpsyg.2020.570017
Amin, M., Alamri, M. M., y Al-Rahmi, W. (2019). Applying the UTAUT Model to Explain the Students' Acceptance of Mobile Learning System in Higher Education. IEEE Access, 7, 174673-174686. https://doi.org/10.1109/ACCESS.2019.2957206
Antony, M. M., Bieling, P. J., Cox, B. J., Enns, M. W., y Swinson, R. P. (1998). Psychometric properties of the 42-item and 21-item versions of the Depression Anxiety Stress Scales (DASS) in clinical groups and a community sample. Psychological Assessment, 10, 176-181. https://doi.org/10.1037/1040-3590.10.2.176
Atienza, F. L., Pons, D., Balaguer, I., y García-Merita, M. L. (2000). Propiedades psicométricas de la Escala de Satisfacción con la Vida en adolescentes. Psicothema, 12(2), 314-319.
Baltà‑Salvador, R., Olmedo‑Torre, N., Peña, M., y Renta‑Davids, A. I. (2021). Academic and emotional effects of online learning during the COVID‑19 pandemic on engineering students. Education and Information Technologies, 1-28. https://doi.org/10.1007/s10639-021-10593-1
Boletín Oficial de la Junta de Andalucía (2021). Orden de 7 de mayo de 2021, por la que se establecen los niveles de alerta sanitaria y se adoptan medidas temporales y excepcionales por razón de salud pública en Andalucía para la contención de la COVID-19 finalizado el estado de alarma. Extraordinario núm. 41. https://www.juntadeandalucia.es/boja/2021/541/BOJA21-541-00069.pdf
Bollen, K. A. (1989). Structural equations with latent variables. John Wiley y Sons. https://doi.org/10.1002/9781118619179
Byrne, B. M. (2013). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, Second Edition Multivariate Applications Series. Taylor & Francis. https://doi.org/10.4324/9780203805534
Cabero-Almenara, J., y Llorente-Cejudo, C. (2020). Covid-19: transformación radical de la digitalización en las instituciones universitarias. Campus Virtuales, 9(2), 25-34.
Cabero-Almenara, J., Guillén-Gámez, F. D., Ruiz-Palmero, J., y Palacios-Rodríguez, A. (2021). Teachers' digital competence to assist students with functional diversity: Identification of factors through logistic regression methods. British Journal of Educational Technology, 1-17. https://doi.org/10.1111/bjet.13151
Diener, E., Emmons, R. A., Larsen, R. J., y Griffin, S. (1985). The Satisfaction with Life Scale. Journal of Personality Assessment, 49(1), 71–75. https://doi.org/10.1207/s15327752jpa4901_13
Faisal, R. A., Jobe, M. C., Ahmed, O., y Sharker, T. (2021). Mental Health Status, Anxiety, and Depression Levels of Bangladeshi University Students During the COVID-19 Pandemic. International Journal of Mental Health and Addiction, 1-16. https://doi.org/10.1007/s11469-020-00458-y
Fonseca-Pedrero, E., Paino, M., Lemos-Giráldez, S., y Muñiz, J. (2010). Propiedades psicométricas de la Depression Anxiety and Stress Scales-21 (DASS-21) en universitarios españoles. Ansiedad y estrés, 16(2), 215-226. https://doi.org/10.1037/t11019-000
Freeston, M. H., Rhéaume, J., Letarte, H., Dugas, M. J., y Ladouceur, R. (1994). Why do people worry? Personality and Individual Differences, 17(6), 791-802. https://doi.org/10.1016/0191-8869(94)90048-5
González, M., Cubas, R., Rovella, A. T., y Darias, M. (2006). Spanish adaptation of the Intolerance of Uncertainty Scale: Cognitive processes, anxiety, and depression. Psicología y Salud, 16(2), 219-233.
González, T., De la Rubia, M. A., Hincz, K. P., Comas-López, M., Subirats, L., Fort, S., y Sacha G. M. (2020). Influence of COVID-19 confinement on students' performance in higher education. PLoS ONE, 15(10), e0239490. https://doi.org/10.1371/journal.pone.0239490
Huarcaya-Victoria1, J., Villarreal-Zegarra, D., Podestà, A., y Luna-Cuadros, M. A. (2020). Psychometric Properties of a Spanish Version of the Fear of COVID-19 Scale in General Population of Lima, Peru. International Journal of Mental Health and Addiction, 22, 1-14. https://doi.org/10.1007/s11469-020-00354-5
Iglesias-Pradas, S., Hernández-García, Á., Chaparro-Peláez, J., y Prieto, J. L. (2021). Emergency remote teaching and students’ academic performance in higher education during the COVID-19 pandemic: A case study. Computers in Human Behavior, 119, 106713. https://doi.org/10.1016/j.chb.2021.106713
Jang, S., y Lee, H. (2021). Changes in Core Competencies among Korean University Students Due to Remote Learning during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18, 7476. https://doi.org/10.3390/ijerph18147476
Jiang, R. (2020). Knowledge, attitudes and mental health of university students during the COVID-19 pandemic in China. Children and Youth Services Review, 119, 105494. https://doi.org/10.1016/j.childyouth.2020.105494
Khechine, H., Raymond, B., y Augier, M. (2020). The adoption of a social learning system: Intrinsic value in the UTAUT model. British Journal of Educational Technology, 51(6), 2306-2325. https://doi.org/10.1111/bjet.12905
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). Guilford.
Lantarón, B. S., García-Perales, N., y Elisondo, R. C. (2021). La vivencia del alumnado en tiempos COVID-19: Estudio comparado entre las universidades de Extremadura (España) y Nacional de Río Cuarto (Argentina). Revista Española de Educación Comparada, 38, 44-68. https://doi.org/10.5944/reec.38.2021.28936
Manjareeka, M., y Pathak, M. (2020). COVID-19 lockdown anxieties: Is student a vulnerable group? Journal of Indian Association for Child and Adolescent Mental Health, 17(1), 72-80.
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530. https://doi.org/10.1093/biomet/57.3.519
Miranda, J., Navarrete, C. H., Noguez, J., Molina-Espinosa, J. M., Ramírez-Montoya, M. S., Navarro-Tuch, S. A., Bustamante-Bello, M. R., Rosas-Fernández, J. B., y Molina, A. (2021). The core components of education 4.0 in higher education: Three case studies in engineering education. Computers & Electrical Engineering, 93, 107278.
https://doi.org/10.1016/j.compeleceng.2021.107278
Moorhouse, B. L. (2020) Adaptations to a face-to-face initial teacher education course ‘forced’ online due to the COVID-19 pandemic. Journal of Education for Teaching, 46(4), 609-611. https://doi.org/10.1080/02607476.2020.1755205
Mukhtar, K., Javed, K., Arooj, M., y Sethi A. (2020). Advantages, Limitations and Recommendations for online learning during COVID-19 pandemic era. Pak. J. Med. Sci., 36¸ 1-5. https://doi.org/10.12669/pjms.36.COVID19-S4.2785
Nuere, S., y de Miguel, L. (2020). The Digital/Technological Connection with COVID‑19: An Unprecedented Challenge in University Teaching. Technology, Knowledge and Learning, 1-13. https://doi.org/10.1007/s10758-020-09454-6
Odriozola-González, P., Planchuelo-Gómez, A., Irurtia, M. J., y Luis-García, R. (2020). Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university. Psychiatry Research, 290, 113108. https://doi.org/10.1016/j.psychres.2020.113108
Organización Mundial de la Salud – OMS (2017). Life course. https://www.who.int/elena/life_course/
Pérez-López, E., Vázquez, A., y Cambero, S. (2021). Educación a distancia en tiempos de COVID-19: Análisis desde la perspectiva de los estudiantes universitarios. RIED. Revista Iberoamericana de Educación a Distancia, 24(1), 331-350. https://doi.org/10.5944/ried.24.1.27855
Pintrich, P., Smith, D., García, T., yMcKeachie, W. (1993). Reliability and Predictive Validity of the Motivated Strategies for Learning Questionnaire (MSLQ). Educational and Psychological Measurement, 53(3), 801-813. https://doi.org/10.1177/0013164493053003024
Ramírez-Montoya, M. S., Loaiza-Aguirre, M. I., Zúñiga-Ojeda, A., y Portuguez-Castro, M. (2021). Characterization of the Teaching Profile within the Framework of Education 4.0. Future Internet, 13(4), 91. https://doi.org/10.3390/fi13040091
Stage, F. K., Carter, H. C., y Nora, A. (2004). Path Analysis: An Introduction and Analysis of a Decade of Research. The Journal of Educational Research, 98(1), 5-13. https://doi.org/10.3200/JOER.98.1.5-13
Venkatesh, V., Morris, M. G., Davis, G. B., y Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Verde, A., y Valero, J. M. (2021). Teaching and Learning Modalities in Higher Education During the Pandemic: Responses to Coronavirus Disease 2019 From Spain. Frontiers in Psychology, 12, 648592. https://doi.org/10.3389/fpsyg.2021.648592
Zurita, F., Martínez, A., Chacón, R., y Ubago, J. L. (2019). Analysis of the Psychometric Properties of the Motivation and Strategies of Learning Questionnaire—Short Form (MSLQ-SF) in Spanish Higher Education Students. Social Sciences, 8(5), 132. https://doi.org/10.3390/socsci8050132