Design and analysis of narratives enriched with artificial intelligence. UNED - UTMACH transfer project
DOI:
https://doi.org/10.5944/ried.28.2.43305Keywords:
artificial intelligence, digital narratives, visual design, ethical designAbstract
This article analyzes the results of a Transfer Project developed by the Universidad Nacional de Educación a Distancia (UNED, Spain) for the Universidad Técnica de Machala (UTMACH, Ecuador) on the integration of Artificial Intelligence (AI) in the elaboration of 22 educational narratives by university students, evaluating its impact on the clarity, coherence, and personalization of academic content. AI facilitates the creation of clear and coherent educational materials tested by analyzing university students' performance and needs, allowing adaptation of the content to their level of understanding and correcting errors. AI also enables the personalization of teaching, tailoring narratives to individual interests and learning styles and increasing learners' relevance and engagement. Incorporating AI materials in virtual learning scenarios such as sNOOCs makes learning more dynamic and participatory. A mixed-methods approach was employed, combining data collection, statistical analysis, and evaluations by Peer Evaluation Circles comprising 200 researchers. The study results indicate a strong correlation between educational relevance and content clarity, as narratives rated as relevant tend to be perceived as clear and coherent. The study underscores the importance of a strong ethical foundation in using AI to ensure adequate and equitable understanding of content, even though sometimes ethics and clarity are not entirely aligned.
Downloads
References
Abbas, M., Jam, F. A., & Khan, T. I. (2024). Is it harmful or helpful? Examining the causes and consequences of generative AI usage among university students. International Journal of Educational Technology in Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00444-7
Ahmad, N., Murugesan, S., & Kshetri, N. (2023). Generative Artificial Intelligence and the Education Sector. Computer, 56(6), 72-76. https://doi.org/10.1109/MC.2023.3263576
Arango Pérez, R., Lovato Sagrado, A., Ortega González, E., & Fontán de Bedout, L. (2024). Implicaciones filosóficas, éticas y pedagógicas del uso de la Inteligencia Artificial en Educación. Digital Education Review, 45. https://doi.org/10.1344/der.2024.45.29-36
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://doi.org/10.2139/ssrn.4337484
Basantes Andrade, A., Cabezas González, M., & Casillas Martín, S. (2020). Los nano-MOOC como herramienta de formación en competencia digital docente. Revista Ibérica de Sistemas e Tecnologias de Informação, E32, 202-214. https://doi.org/10.14201/gredos.144006
Bond, M., Buntins, K., Bedenlier, S., Zawacki-Richter, O., & Kerres, M. (2020). Mapping research in student engagement and educational technology in higher education: a systematic evidence map. International Journal of Educational Technology in Higher Education, 17, 2. https://doi.org/10.1186/s41239-019-0176-8
Boud, D., Cohen, R., & Sampson, J. (2021). Peer Learning in Higher Education: Learning from and Each Other. Routledge.
Clark, D. (2013, January 29). MOOCs: taxonomy of 8 types of MOOC. Donald Clark Plan B. http://donaldclarkplanb.blogspot.com/2013/01/moocs-taxonomy-of-8-types-of-mooc.html
Delgado, N., Campo Carrasco, L., Sainz de la Maza, M., & Etxabe-Urbieta, J. M. (2024). Aplicación de la Inteligencia Artificial (IA) en Educación: Los beneficios y limitaciones de la IA percibidos por el profesorado de educación primaria, educación secundaria y educación superior. Revista Electrónica Interuniversitaria de Formación del Profesorado, 27(1), 207-224. https://doi.org/10.6018/reifop.577211
Dillenbourg, P. (2015). Orchestration Graphs Modeling Scalable Education. EPFL Press.
Eager, B., & Brunton, R. (2023). Prompting Higher Education Towards AI-Augmented Teaching and Learning Practice. Journal of University Teaching and Learning Practice, 20(5). https://doi.org/10.53761/1.20.5.02
Escaño, C. (2023). Educación Postdigital: un enfoque desde la pedagogía crítica y mediática para un contexto post-COVID19. Revista Mediterránea de Comunicación, 14(2), 243-257. https://doi.org/10.14198/MEDCOM.23899
Félix, J., & Webb, L. (2024). Use of artificial intelligence in education delivery and assessment. Research Briefing, UK Parliament. https://doi.org/10.58248/PN712
Fondevila-Gascón, J.-F., Martín-Guart, R. F., Carreras Alcalde, M., & Vila Márquez, F. (2024). Interactividad en educación: Aplicaciones de la Inteligencia Artificial y el HbbTV. Didáctica, innovación y multimedia, 42. https://ddd.uab.cat/record/293485
Forero-Corba, W., & Negre Bennasar, F. (2024). Técnicas y aplicaciones del Machine Learning e Inteligencia Artificial en educación: una revisión sistemática. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 1-34. https://doi.org/10.5944/ried.27.1.37491
Gallent-Torres, C., Arenas Romero, B., Vallespir Adillón, M., & Foltýnek, T. (2024). Inteligencia Artificial en educación: entre riesgos y potencialidades. Práxis Educativa, 19, e23760. https://doi.org/10.5212/PraxEduc.v.19.23760.083
Gil-Quintana, J. (2024). Los sNOOC, un modelo educativo masivo, abierto y en línea, desde el empoderamiento social y el enfoque minimalista. Revista Latinoamericana Ogmios, 4(11). https://doi.org/10.53595/rlo
Guzmán Matute, N. del R., Álvarez González, N. F., & Pacheco Pérez, X. O. (2024). Alcances y limitaciones de la IA en educación. RECIMUNDO, 8(1), 215-223. https://doi.org/10.26820/recimundo/8.(1).ene.2024.215-223
Hueso Romero, J. J., García Blázquez, E., & Gil Quintana, J. (2024). El Microaprendizaje servicio a través de los sNOOC: propuesta formativa para personas en riesgo de exclusión en México. Edutec. Revista Electrónica de Tecnología Educativa, 88, 42-61. https://doi.org/10.21556/edutec.2024.88.3101
Lee, A. V. Y., Tan, S. C., & Teo, C. L. (2023). Designs and practices using generative AI for sustainable student discourse and knowledge creation. Smart Learning Environments, 10, 59. https://doi.org/10.1186/s40561-023-00279-1
López, H. L. L., Escalera, A. R., & García, C. R. C. (2023). Personalización del aprendizaje con inteligencia artificial en la educación superior. Revista Digital de Tecnologías Informáticas y Sistemas, 7(1), 123-128. https://doi.org/10.61530/redtis.vol7.n1.2023.165.123-128
Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: Un argumento a favor de la IA en la educación. Pearson.
Moscoso, M. C. M., Chacón, H. F. C., Oquendo, F. M. M., Logaña, M. A. P., & Ramos, E. G. C. (2024). Narrativas Digitales en el Área de Ciencias Sociales: Integración de Storytelling e Inteligencia Artificial. Ciencia Latina Revista Científica Multidisciplinar, 8(2), 4192-4209. https://doi.org/10.37811/cl_rcm.v8i2.10830
Pereyra, L. E. (2022). Metodología de la investigación. Klik.
Ratnasari W., Chou, T. C., & Huang, C. (2024). From hype to reality: the changing landscape of MOOC research. Library Hi Tech. https://doi.org/10.1108/LHT-07-2023-0320
Rodríguez, J. R., & Álvarez, M. R. (2020). Calcular la fiabilidad de un cuestionario o escala mediante el SPSS: El coeficiente alfa de Cronbach. REIRE: Revista d'Innovació i Recerca en Educació, 13(2), 8. https://doi.org/10.1344/reire2020.13.230048
Romero, M. Á. M. (2024). Aplicaciones de la Inteligencia Artificial para la investigación y la innovación en la educación superior. Revista Social Fronteriza, 4(4), e44336. https://doi.org/10.59814/resofro.2024.4(4)336
Sailer, M., & Homner, L. (2020). La gamificación del aprendizaje: un metaanálisis. Educational Psychology Review, 32, 77-112. https://doi.org/10.1007/s10648-019-09498-w
Schön, D. A. (1983). El profesional reflexivo. Cómo piensan los profesionales cuando actúan. Paidós.
Tamayo, J. L. R. (2019). Realidad extendida, interactividad y entornos inmersivos 3D: Revisión de la literatura y proyecciones. Actas Icono 14, 1(1), 396-415. https://icono14.net/ojs/index.php/actas/article/view/1330
Tan, S. C., Lee, A. V. Y., & Lee, M. (2022). A systematic review of artificial intelligence techniques for collaborative learning over the past two decades. Computers and Education: Artificial Intelligence, 100097. https://doi.org/10.1016/j.caeai.2022.100097
Tapia, C. E. F., & Cevallos, K. L. F. (2021). Pruebas para comprobar la normalidad de datos en procesos productivos: Anderson-Darling, Ryan-Joiner, Shapiro-Wilk y Kolmogórov-Smirnov. Societas, 23(2), 83-106. https://revistas.up.ac.pa/index.php/societas/article/view/2302
Van Vaerenbergh, S. (2024). Inteligencia artificial para potenciar la creatividad y la innovación educativa. Revista INFAD de Psicología. International Journal of Developmental and Educational Psychology, 1(1), 507-513. https://doi.org/10.17060/ijodaep.2024.n1.v1.2644
Yusuf, A., Pervin, N., Román-González, M., & Noor, N. M. (2024). IA generativa en educación e investigación: revisión de mapeo sistemático. Review of Education, 12(2). https://doi.org/10.1002/rev3.3489
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Javier Gil Quintana, Eduardo García Blazquez, José Javier Hueso Romero, Carmen Cantillo Valero

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles that are published in this journal are subject to the following terms:
1. The authors grant the exploitation rights of the work accepted for publication to RIED, guarantee to the journal the right to be the first publication of research understaken and permit the journal to distribute the work published under the license indicated in point 2.
2. The articles are published in the electronic edition of the journal under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. You can copy and redistribute the material in any medium or format, adapt, remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
3. Conditions for self-archiving. Authors are encouraged to disseminate electronically the OnlineFirst version (assessed version and accepted for publication) of its articles before publication, always with reference to its publication by RIED, favoring its circulation and dissemination earlier and with this a possible increase in its citation and reach among the academic community.

