Educating Urban Designers using Augmented Reality and Mobile Learning Technologies
DOI:
https://doi.org/10.5944/ried.20.2.17675Keywords:
Visual learning, Architecture, Urban planning, Information technology, Computer-assisted design, urban developmentAbstract
This paper describes an educational experience using augmented reality (AR) on mobile devices as a tool for learning urban design concepts and specifically for architecture degree students. In a real project-based exercise, the participants had to design a sculpture to be placed in a public space, checking the suitability of the object as for example the form, scale, location, materials, etc., and taking into account the surroundings. The project is controlled on-site using AR on mobile platforms, encouraging collaborative learning by sharing the 3D models of their proposals, and acting both as producers and consumers of AR content in the process. To assess both the usability of technology, as well as the learning improvement, the class was divided into two groups with equivalent pre-course grades: a control group, who followed the conventional course in the laboratory, and a test group, who used AR technology. At the end of the course, the AR-using group showed a significant increase in academic performance, higher motivation and satisfaction compared to the control group.
Downloads
References
Adkins, K. (2014) Aesthetics, Authenticity and the Spectacle of the Real: How Do We Educate the Visual World We Live in Today? International Journal of Art & Design Education, 33, 326–334.
Cartes, I. (1997) Art in the urban landscape, Urban Design International, 2 (4), 189-198.
Burton-Chellew, M.N., Mouden, C.E., West, S.A.(2016) Conditional cooperation and confusion in public-goods experiments. PNAS. 113, 1291–1296.
Döllner, J., Baumann, K., Buchholz, H. (2006). Virtual 3D city models as foundation of complex urban information spaces. In 11th International Conference on Urban Planning and Spatial Development in the Information Society; Vienna, Austria, 2006, 107–112.
Dunleavy, M., Dede, C., Mitchell, R. (2008). Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning, Journal of Science Education and Technology, 18(1), 7–22.
Erskine, M. A., Gregg, D. G., Karimi, J., Scott, J. E. (2015). Geospatial Reasoning Ability: Definition, Measurement and Validation, International Journal of Human-Computer Interaction, 31 (6), 402-412.
Fonseca, D., Martí, N., Redondo, E., Navarro, I., & Sánchez, A. (2014). Relationship between student profile, tool use, participation, and academic performance with the use of Augmented Reality technology for visualized architecture models. Computers in Human Behavior, 31, 434-445.
Fonseca, D., Valls, F., Redondo, E., & Villagrasa, S. (2016). Informal interactions in 3D education: Citizenship participation and assessment of virtual urban proposals. Computers in Human Behavior, 55, 504-518.
Giesbers, B., Rienties, B., Tempelaar, D., Gijselaers, W. (2013). Investigating the relations between motivation, tool use, participation, and performance in an e-learning course using web-videoconferencing. Computers in Human Behavior. 29(1). 285-292.
Gruen, A., Behnisch, M., Kohler, N. (2009). Perspectives in the reality-based generation, n D modelling, and operation of buildings and building stocks. Building Research & Information, 37(5-6), 503-519.
Haugstvedt, A. C., Krogstie, J. (2012, November). Mobile augmented reality for cultural heritage: A technology acceptance study. In Mixed and Augmented Reality. 2012 IEEE International Symposium on, 247-255.
Hortet, L., Adrià, M. (1987) VV.AA. Barcelona, espais i escultures (1982-1986) Hortet, L. Y Adriá, M. Eds. Fundació Joan Miró Barcelona.
Kaufmann, H., Schmalstieg, D. (2003) Mathematics and geometry education with collaborative augmented reality, Computers & Graphics, 27(3), 339-345.
Kristoffersen S., Ljungberg, F. (2000) Mobile Informatics. BRAA, K. et al. Planet Internet. Lund, Studentlitteratur.
Kuliga, S.F., Thrash, T., Dalton, R.C., Hölscher, C. (2015) Virtual reality as an empirical research tool — Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems. 54, 363–375.
Leopold, C., Górska, R.A., Sorby, S.A. (2001). International Experiences in Developing the Spatial Visualization Abilities of Engineering Students. Journal for Geometry and Graphics 5(1), 81-91.
Martín-Gutierrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., Ortega, M. (2010) Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91.
Mateu, J., Lasala, M. J., Alemán, X. (2014). VirtualTouch: a tool for developing mixed reality educational applications and an example of use for inclusive education. International Journal of Human-Computer Interaction, 30 (10), 815-828.
Matsumoto, T., Hashimoto, S., Okude, N. (2008). The embodied Web: embodied Web‐services interaction with an umbrella for augmented city experiences, Computer Animation and Virtual Worlds, 19(1), 49-66.
Monclús, F. (2010) The Barcelona model: An original formula? From 'reconstruction' to strategic urban projects (1979-2004). Planning Perspectives. Ed. Taylor and Francis.
Müller, P., Zeng, G., Wonka, P., Van Gool, L. (2007, August). Image-based procedural modeling of facades. In ACM Transactions on Graphics, 26(3), 85.
Naismith, L. (2004). Literature review in mobile technologies and learning. NESTA Futurelab series, report 11. Bristol, UK: NESTA Futurelab
Navarro, I., Fonseca, D., Redondo, E., Sánchez, A., Martí, N., Simón, D. (2012) Uso de la realidad aumentada como plataforma educativa en la visualización arquitectónica. En Proc. De 7ª Conferencia Ibérica De Sistemas y Tecnologías De La Información, 685-690.
Navarro, I., De Reina, O., Rodiera, A., Fonseca, D. (2016), Indoor positioning systems: 3D virtual model visualization and design process of their assessment using mixed methods: Case study: World heritatge buildings and spatial skills for architecture students, 11º Conferencia Ibérica de Sistemas y Tecnologías de Información, Gran Canaria (Spain), En Actas CISTI, 136-142
Park, J. Y. (2011) Design Education Online: Learning Delivery and Evaluation. International Journal of Art & Design Education, 30, 176–187.
Payne, R. (2012) Seen, Unseen or Overlooked? How can Visual Perception Develop through a Multimodal Enquiry? International Journal of Art & Design Education, 31, 245–255.
Redondo, E., Fonseca, D., Sánchez, A., Navarro, I. (2012) Augmented Reality in Architecture Degree. New Approaches in Scene Illumination and User Evaluation, Journal of Information Technology and Application in Education, Vol. 1(1), 19-27.
Sadurni, L., Ramujkic, V. (2002) Olimpics Sculpture Guide, E. Tolosa, D. Romaní Eds., Barcelona, Rotor.
Sánchez, A., Redondo, E., & Fonseca, D. (2012, November). Developing an augmented reality application in the framework of architecture degree. In Proceedings of the 2012 ACM workshop on User experience in e-learning and augmented technologies in education, 37-42.
Sánchez, A., Redondo, E., Fonseca, D., Navarro, I. (2014), Academic Performance Assessment using Augmented Reality in Engineering Degree Course, 44th Annual Frontiers in Education Conference, Madrid (Spain), In Proceedings FIE, 1527- 1533.
Semmo, A., Trapp, M., Kyprianidis, J. E., Döllner, J. (2012, June). Interactive Visualization of Generalized Virtual 3D City Models using Level‐of‐Abstraction Transitions. In Computer Graphics Forum. 31(3), 885-894.
Sinker, R., Giannachi, G., Carletti, L. (2013). Art Maps – Mapping the Multiple Meanings of Place, International Journal of Art & Design Education, 32, 362–373.
Sun, J., Hsu, Y. (2013). Effect of interactivity on learner perceptions in Web-based instruction, Computers in Human Behavior, 29(1). 171-184.
Trias, E. (1976) Artista y la ciudad, Ed. Anagrama. Madrid.
Tsvetozar, G., Evgenia, G., Smrikarov, A. (2004). M-learning - A new stage of e-learning. International Conference on Computer Systems and Technologies.
Valls, F., Garcia-Almirall, P., Redondo, E., & Fonseca, D. (2014). From raw data to meaningful information: a representational approach to cadastral databases in relation to urban planning. Future Internet, 6(4), 612-639.
Valls, F., Redondo, E., Fonseca, D. (2015), E-Learning and Serious Games: New trends in Architectural and Urban Design Education, 2nd International Conference on Learning and Collaboration Technologies, Los Angeles, USA, LNCS V. 9192, 632-643.
Wang, T. (2011) Designing for Designing: Information and Communication Technologies (ICTs) and Professional Education, International Journal of Art & Design Education, 30, 188–199.
Zlatanova, S., Itard, L., Kibria, M. S., Van Dorst, M. (2010). A user requirements study of digital 3D models for urban renewal. Open House International, 35(3).
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 RIED. Revista Iberoamericana de Educación a Distancia

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles that are published in this journal are subject to the following terms:
1. The authors grant the exploitation rights of the work accepted for publication to RIED, guarantee to the journal the right to be the first publication of research understaken and permit the journal to distribute the work published under the license indicated in point 2.
2. The articles are published in the electronic edition of the journal under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. You can copy and redistribute the material in any medium or format, adapt, remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
3. Conditions for self-archiving. Authors are encouraged to disseminate electronically the OnlineFirst version (assessed version and accepted for publication) of its articles before publication, always with reference to its publication by RIED, favoring its circulation and dissemination earlier and with this a possible increase in its citation and reach among the academic community.