Smartphones in the teaching of Physics Laws: Projectile motion
DOI:
https://doi.org/10.5944/ried.20.2.17663Keywords:
didactic use of computer, new technologies, physics, teaching practice.|Física, nuevas tecnologías, práctica pedagógica, uso didáctico del ordenador.Abstract
New technologies are called upon to play an important role as beneficial tools for meaningful learning in the classroom. In particular, smartphones can be regarded as pocket computers that, in addition to a remarkable memory and computing capacity, incorporate sensors such as accelerometers, gyroscopes, magnetometers, light sensors, etc., which turn them into easily available measurement instruments for practical classes in an educational environment. In this study, the suitability of these devices for demonstrating Classical Mechanics, minimizing the use of resources and class time, has been assessed in two real classrooms (with 16 to 19 year-old students) by conducting experiments related to projectile motion (vertical free fall and parabolic motion). A simple methodology that only involves a mobile phone, a free burst camera application and open-source tools (GIMP and OpenOffice Calc) for data processing is presented. The results obtained in non-perfected conditions led to an estimate of the acceleration of gravity with an error lower than 2%. Further analyses and alternative procedures are also suggested in the discussion section. No major difficulties were encountered with the high school students or with the first year university ones, and a high degree of satisfaction was found.
Downloads
References
Baird, W., Secrest, J., Padgett, C., Johnson, W., & Hagrelius, C. (2016). Smartphones and Time Zones. The Physics Teacher, 54(6), 351-353. doi:10.1119/1.4961177
Becker, H. J. (2000). Access to classroom computers. Communications of the ACM, 43(6), 24-24.
Clements, D. H., & Sarama, J. (2003). Strip mining for gold: Research and policy in educational technology—A response to “Fool’s Gold”. Educational Technology Review, 11(1), 7-69.
CMS collaboration. (2014). Evidence for the direct decay of the 125 GeV Higgs boson to fermions. Nature Physics, 10(8), 557-560.
Chevrier, J., Madani, L., Ledenmat, S., & Bsiesy, A. (2013). Teaching classical mechanics using smartphones. The Physics Teacher, 51(6), 376-377. doi:10.1119/1.4818381
Forinash, K., & Wisman, R. F. (2012). Smartphones as portable oscilloscopes for physics labs. The Physics Teacher, 50(4), 242. doi:10.1119/1.3694081
Forinash, K., & Wisman, R. F. (2015). Photogate Timing with a Smartphone. The Physics Teacher, 53(4), 234-235. doi:10.1119/1.4914566
Glaubke, C. (2007). The effects of interactive media on preschoolers’ learning: A review of the research and recommendations for the future. Oakland, CA: Children Now. www. childrennow. org/uploads/documents/prek_interactive_learning_2007. pdf.
Hall, J. (2013). More smartphone acceleration. The Physics Teacher, 51(1), 6. doi:10.1119/1.4772022
Hermans, R., Tondeur, J., van Braak, J., & Valcke, M. (2008). The impact of primary school teachers’ educational beliefs on the classroom use of computers. Computers & Education, 51(4), 1499-1509.
Ifenthaler, D., & Schweinbenz, V. (2013, April 27-May 1, 2013). Students’ acceptance of tablet-PCs in the classroom. Paper presented at the AERA 2013: Education and poverty: theory, research, policy, and praxis: Proceedings of the American Education Research Association 2013 annual meeting, San Francisco, CA, USA.
Kuhn, J., & Vogt, P. (2013). Analyzing acoustic phenomena with a smartphone microphone. The Physics Teacher, 51(2), 118. doi:10.1119/1.4775539
Lowther, D. L., Inan, F. A., Strahl, J. D., & Ross, S. M. (2012). Do one-to-one initiatives bridge the way to 21st century knowledge and skills? Journal of Educational Computing Research, 46(1), 1-30.
MacIsaac, D. (2015). Smartphones in a guitar redux. The Physics Teacher, 53(3), 190-190. doi:10.1119/1.4908097
Mau, S., Insulla, F., Pickens, E. E., Ding, Z., & Dudley, S. C. (2016). Locating a smartphone's accelerometer. The Physics Teacher, 54(4), 246-247. doi:10.1119/1.4944372
Monteiro, M., Stari, C., Cabeza, C., & Marti, A. C. (2015). The Atwood machine revisited using smartphones. The Physics Teacher, 53(6), 373-374. doi:10.1119/1.4928357
Monteiro, M., Vogt, P., Stari, C., Cabeza, C., & Marti, A. C. (2016). Exploring the atmosphere using smartphones. The Physics Teacher, 54(5), 308-309. doi:10.1119/1.4947163
Müller, A., Vogt, P., Kuhn, J., & Müller, M. (2015). Cracking knuckles — A smartphone inquiry on bioacoustics. The Physics Teacher, 53(5), 307-308. doi:10.1119/1.4917442
Shakur, A., & Kraft, J. (2016). Measurement of Coriolis Acceleration with a Smartphone. The Physics Teacher, 54(5), 288-290. doi:10.1119/1.4947157
Spritefish. (2016). Fast Burst Camera Lite v.6.2.0. Google Play. Retrieved from https://play.google.com/store/apps/details?id=com.spritefish.fastburstcameralite
Stošić, L. (2015). The importance of educational technology in teaching. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 3(1), 111-114.
Stosic, L., & Stosic, I. (2013). Diffusion of innovation in modern school. International Journal Of Cognitive Research In Science, Engineering And Education (IJCRSEE), 1(1), 5-13.
Thomas, K. M., O’Bannon, B. W., & Britt, V. G. (2014). Standing in the schoolhouse door: Teacher perceptions of mobile phones in the classroom. Journal of Research on Technology in education, 46(4), 373-395.
Tornaría, F., Monteiro, M., & Marti, A. C. (2014). Understanding coffee spills using a smartphone. The Physics Teacher, 52(8), 502-503. doi:10.1119/1.4897595
Vogt, P., & Kuhn, J. (2012). Analyzing simple pendulum phenomena with a smartphone acceleration sensor. The Physics Teacher, 50(7), 439. doi:10.1119/1.4752056
Vogt, P., Kuhn, J., & Neuschwander, D. (2014). Determining ball velocities with smartphones. The Physics Teacher, 52(6), 376-377. doi:10.1119/1.4893100
Wang, L., Ertmer, P. A., & Newby, T. J. (2004). Increasing preservice teachers’ self-efficacy beliefs for technology integration. Journal of Research on Technology in Education, 36(3), 231-250.
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 RIED. Revista Iberoamericana de Educación a Distancia

This work is licensed under a Creative Commons Attribution 4.0 International License.
The articles that are published in this journal are subject to the following terms:
1. The authors grant the exploitation rights of the work accepted for publication to RIED, guarantee to the journal the right to be the first publication of research understaken and permit the journal to distribute the work published under the license indicated in point 2.
2. The articles are published in the electronic edition of the journal under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. You can copy and redistribute the material in any medium or format, adapt, remix, transform, and build upon the material for any purpose, even commercially. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
3. Conditions for self-archiving. Authors are encouraged to disseminate electronically the OnlineFirst version (assessed version and accepted for publication) of its articles before publication, always with reference to its publication by RIED, favoring its circulation and dissemination earlier and with this a possible increase in its citation and reach among the academic community.