Smartphones in the teaching of Physics Laws: Projectile motion

Authors

DOI:

https://doi.org/10.5944/ried.20.2.17663

Keywords:

didactic use of computer, new technologies, physics, teaching practice.|Física, nuevas tecnologías, práctica pedagógica, uso didáctico del ordenador.

Abstract

New technologies are called upon to play an important role as beneficial tools for meaningful learning in the classroom. In particular, smartphones can be regarded as pocket computers that, in addition to a remarkable memory and computing capacity, incorporate sensors such as accelerometers, gyroscopes, magnetometers, light sensors, etc., which turn them into easily available measurement instruments for practical classes in an educational environment. In this study, the suitability of these devices for demonstrating Classical Mechanics, minimizing the use of resources and class time, has been assessed in two real classrooms (with 16 to 19 year-old students) by conducting experiments related to projectile motion (vertical free fall and parabolic motion). A simple methodology that only involves a mobile phone, a free burst camera application and open-source tools (GIMP and OpenOffice Calc) for data processing is presented. The results obtained in non-perfected conditions led to an estimate of the acceleration of gravity with an error lower than 2%. Further analyses and alternative procedures are also suggested in the discussion section. No major difficulties were encountered with the high school students or with the first year university ones, and a high degree of satisfaction was found. 

Downloads

Author Biographies

Pablo Martín-Ramos, Universidad de Zaragoza

Departamento de Ciencias Agrarias y del Medio Natural, Área de Electrotecnia y Electrificación

Escuela Politécnica Superior de Huesca, Universidad de Zaragoza

Carretera de Cuarte s/n

22071 Huesca, España

Tfno: +34974292668

Fax: +34974239302

E-mail: pmr@unizar.es

Manuela Ramos Silva, Universidade de Coimbra

CFisUC, Department of Physics
FCTUC, Universidade de Coimbra
Rua Larga
P-3004-516 Coimbra, Portugal

Phone: +351239410648

E-mail: manuela@pollux.fis.uc.pt

Pedro Sidonio Pereira da Silva, Universidade de Coimbra

CFisUC, Department of Physics
FCTUC, Universidade de Coimbra
Rua Larga
P-3004-516 Coimbra, Portugal

References

Baird, W., Secrest, J., Padgett, C., Johnson, W., & Hagrelius, C. (2016). Smartphones and Time Zones. The Physics Teacher, 54(6), 351-353. doi:10.1119/1.4961177

Becker, H. J. (2000). Access to classroom computers. Communications of the ACM, 43(6), 24-24.

Clements, D. H., & Sarama, J. (2003). Strip mining for gold: Research and policy in educational technology—A response to “Fool’s Gold”. Educational Technology Review, 11(1), 7-69.

CMS collaboration. (2014). Evidence for the direct decay of the 125 GeV Higgs boson to fermions. Nature Physics, 10(8), 557-560.

Chevrier, J., Madani, L., Ledenmat, S., & Bsiesy, A. (2013). Teaching classical mechanics using smartphones. The Physics Teacher, 51(6), 376-377. doi:10.1119/1.4818381

Forinash, K., & Wisman, R. F. (2012). Smartphones as portable oscilloscopes for physics labs. The Physics Teacher, 50(4), 242. doi:10.1119/1.3694081

Forinash, K., & Wisman, R. F. (2015). Photogate Timing with a Smartphone. The Physics Teacher, 53(4), 234-235. doi:10.1119/1.4914566

Glaubke, C. (2007). The effects of interactive media on preschoolers’ learning: A review of the research and recommendations for the future. Oakland, CA: Children Now. www. childrennow. org/uploads/documents/prek_interactive_learning_2007. pdf.

Hall, J. (2013). More smartphone acceleration. The Physics Teacher, 51(1), 6. doi:10.1119/1.4772022

Hermans, R., Tondeur, J., van Braak, J., & Valcke, M. (2008). The impact of primary school teachers’ educational beliefs on the classroom use of computers. Computers & Education, 51(4), 1499-1509.

Ifenthaler, D., & Schweinbenz, V. (2013, April 27-May 1, 2013). Students’ acceptance of tablet-PCs in the classroom. Paper presented at the AERA 2013: Education and poverty: theory, research, policy, and praxis: Proceedings of the American Education Research Association 2013 annual meeting, San Francisco, CA, USA.

Kuhn, J., & Vogt, P. (2013). Analyzing acoustic phenomena with a smartphone microphone. The Physics Teacher, 51(2), 118. doi:10.1119/1.4775539

Lowther, D. L., Inan, F. A., Strahl, J. D., & Ross, S. M. (2012). Do one-to-one initiatives bridge the way to 21st century knowledge and skills? Journal of Educational Computing Research, 46(1), 1-30.

MacIsaac, D. (2015). Smartphones in a guitar redux. The Physics Teacher, 53(3), 190-190. doi:10.1119/1.4908097

Mau, S., Insulla, F., Pickens, E. E., Ding, Z., & Dudley, S. C. (2016). Locating a smartphone's accelerometer. The Physics Teacher, 54(4), 246-247. doi:10.1119/1.4944372

Monteiro, M., Stari, C., Cabeza, C., & Marti, A. C. (2015). The Atwood machine revisited using smartphones. The Physics Teacher, 53(6), 373-374. doi:10.1119/1.4928357

Monteiro, M., Vogt, P., Stari, C., Cabeza, C., & Marti, A. C. (2016). Exploring the atmosphere using smartphones. The Physics Teacher, 54(5), 308-309. doi:10.1119/1.4947163

Müller, A., Vogt, P., Kuhn, J., & Müller, M. (2015). Cracking knuckles — A smartphone inquiry on bioacoustics. The Physics Teacher, 53(5), 307-308. doi:10.1119/1.4917442

Shakur, A., & Kraft, J. (2016). Measurement of Coriolis Acceleration with a Smartphone. The Physics Teacher, 54(5), 288-290. doi:10.1119/1.4947157

Spritefish. (2016). Fast Burst Camera Lite v.6.2.0. Google Play. Retrieved from https://play.google.com/store/apps/details?id=com.spritefish.fastburstcameralite

Stošić, L. (2015). The importance of educational technology in teaching. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 3(1), 111-114.

Stosic, L., & Stosic, I. (2013). Diffusion of innovation in modern school. International Journal Of Cognitive Research In Science, Engineering And Education (IJCRSEE), 1(1), 5-13.

Thomas, K. M., O’Bannon, B. W., & Britt, V. G. (2014). Standing in the schoolhouse door: Teacher perceptions of mobile phones in the classroom. Journal of Research on Technology in education, 46(4), 373-395.

Tornaría, F., Monteiro, M., & Marti, A. C. (2014). Understanding coffee spills using a smartphone. The Physics Teacher, 52(8), 502-503. doi:10.1119/1.4897595

Vogt, P., & Kuhn, J. (2012). Analyzing simple pendulum phenomena with a smartphone acceleration sensor. The Physics Teacher, 50(7), 439. doi:10.1119/1.4752056

Vogt, P., Kuhn, J., & Neuschwander, D. (2014). Determining ball velocities with smartphones. The Physics Teacher, 52(6), 376-377. doi:10.1119/1.4893100

Wang, L., Ertmer, P. A., & Newby, T. J. (2004). Increasing preservice teachers’ self-efficacy beliefs for technology integration. Journal of Research on Technology in Education, 36(3), 231-250.

Published

2017-07-01

How to Cite

Martín-Ramos, P., Ramos Silva, M., & Pereira da Silva, P. S. (2017). Smartphones in the teaching of Physics Laws: Projectile motion. RIED-Revista Iberoamericana de Educación a Distancia, 20(2), 213–231. https://doi.org/10.5944/ried.20.2.17663

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > >> 

You may also start an advanced similarity search for this article.