INFLUENCE OF COGNITIVE AND MOTIVATIONAL VARIABLES IN ACADEMIC MATHEMATICS PERFORMANCE IN CHILEAN STUDENTS

Authors

  • Gamal Cerda Universidad de Concepción, Chile
  • Eva M. Romera Universidad de Córdoba
  • José A. Casas Universidad de Córdoba
  • Carlos Pérez Universidad de O´Higgins, Chile
  • Rosario Ortega Ruiz Universidad de Córdoba

DOI:

https://doi.org/10.5944/educxx1.19052

Keywords:

Learning motivation, mathematics education, Equations (Mathematics), reasoning, structural equations.

Abstract

Apart from cognitive processes and the levels of abstraction in mathematics, predisposition or motivation for mathematical tasks interacts
with academic mathematics performance in a significant manner. The
objective of this study is to measure the effect of incorporating a variable
of predisposition to mathematical tasks to a complex model, which
also considers the student’s formal and inductive logical reasoning skills
regarding academic mathematics performance. Our aim is to assess
to what extent success in mathematics provides feedback to students
and how it influences overall academic achievement. In order to do so,
different instruments were used, such as TOLT (Test of Logical Thinking),
TILS (Test of Higher Logical Thinking) and a Likert-type scale
to measure the predisposition for mathematical tasks. The interaction
between variables was modeled using structural equations. The results
show the important role that predisposition for mathematical tasks plays
in academic performance. They also show how this predisposition interacts
and modulates the effect of cognitive factors on overall academic
performance, and how it also mitigates the strength of their univariate
relationships. The educational role of these findings is discussed, as well
as possible ways of improving a negative predisposition towards mathematical tasks in school environments.

Downloads

Download data is not yet available.

References

Acevedo, J. A. y Oliva, J. M. (1995). Validación y aplicaciones de un test de razonamiento lógico, Revista de Psicología General y Aplicada, 48, 339-352.

Aguilar, M., Navarro, J., López, J. y Alcalde, C. (2002). Pensamiento formal y resolución de problemas matemáticos. Psicothema, 14(2), 382-386.

Akin, A. & Kurbanoglu, I. (2011). The relationships between math anxiety, math attitudes, and self-efficacy: A structural equation model. Studia Psychologica, 53(3), 263-274.

Barkl, S., Porter, A. & Ginns, P. (2012). Cognitive training for children: effects on inductive reasoning, deductive reasoning, and mathematics achievement in an Australian school setting. Psychology in the Schools, 49(9), 828-842. doi: 10.1002/pits.21638.

Cerda, G. (2012). Logical intelligence levels and math performance: a study on primary and secondary Chilean students. Universidad de Córdoba, Córdoba. Retrieved from http://hdl.handle.net/10396/8061

Cerda, G., Ortega, R., Pérez, C., Flores, C. y Melipillán, R. (2011). Inteligencia lógica y extracción social en estudiantes talentosos y normales de Enseñanza Básica y Media en Chile. Anales de Psicología, 27(2), 389-398.

Cerda, G., Ortega-Ruiz, R., Casas, J., Del Rey, R., y Pérez, C. (2016). Predisposición desfavorable hacia el aprendizaje de las Matemáticas: una propuesta para su medición. Estudios Pedagógicos., 42 (1), 53-63.

Cerda, G., Pérez, C., Navarro, J. I., Aguilar, M., Casas, J., Aragón, E. (2015). Explanatory Model of Emotional-Cognitive Variables in School Mathematics Performance: A Longitudinal Study in Primary School. Frontiers in Psychology, 6, article 1363, 1-10. DOI:10.3389/fpsyg.2015.01363.

Cerda, G., Pérez, C. y Melipillán, R. (2010). Test de Inteligencia Lógica Superior (TILS). Manual de Aplicación. Concepción: Universidad de Concepción.

Cleary, T. & Chen, P. (2009). Selfregulation, motivation, and math achievement in middle school: Variations across grade level and math context. Journal of School Psychology, 47, 291-314. doi: 10.1016/j.jsp.2009.04.002.

Del Rey, R. Madera, E. & Ortega-Ruiz, R. (2011). Validation of CAT-Ma: an instrument of measure of the emotional impact of mathematics learning. Proceedings of the 14th Biennial conference of the European association for Research on learning and instruction. Exeter/ United Kingdom.

Desco, M., Navas-Sánchez, F., Sánchez-González, J., Reig, S., Robles, O., Franco, C., Guzmán-De-Villoria, Gracía-Barreano, P. & Arango, C. (2011). Mathematically gifted adolescents use more extensive and more bilateral areas of the frontoparietal network than controls during executive functioning and fluid reasoning tasks. NeuroImage, 57, 281-292. doi: 10.1016/j.neuroimage. 2001.03.063.

Devine, A., Fawcett, K., Scuzs, D. & Dowker, A. (2012). Gender differences in mathematics anxiety and the relation to mathematics performance while controlling test anxiety. Behavioral and Brain Functions, 8(33). doi: 10.1186/1744-9081-8-33

Flora, D. B. & Curran, P. J. (2004). An Empirical Evaluation of Alternative Methods of Estimation for Confirmatory Factor Analysis With Ordinal Data. Psychological Methods, 9(4), 466-491. doi:10.1037/1082-989X.9.4.466.

Ganley, C. M., & Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills and attitudes. Journal of Applied Developmental Psychology 32, 235-242. doi: 10.1016/j.appdev.2011.04.001.

Guven, B. & Cabakcor, B. (2013). Factors influencing mathematical problem-solving achievement of seventh grade Turkish students. Learning and Individual Differences, 23, 131-137.

Hailikari, T., Nevgi, A. & Komulainen, E. (2008). Academic self-beliefs and prior knowledge as predictors of student achievement in Mathematics: A structural model. Educational Psychology, 28(1), 59-71.

Hirvonen, R., Tolvanen, A., Aunola, K., & Numi, J-E. (2012). The developmental dynamics of task-avoidant behavior and math performance in kindergarten and elementary school. Learning and Individual Differences, 22, 715-723. doi:10.1016/j.lindif.2012.05.014.

Hu, L. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi:10.1080/10705519909540118.

Jansen, B., Louwerse, J., Straatemeier, M., Van der Ven, S., Klinkenberg, S. & Van der Maas, H. (2013). The influence of experiencing success in math on math anxiety, perceived math competence, and math performance. Learning and Individual Differences, 24, 190-197. doi: 10.1016/j.lindif.2012.12.014.

Jiménez, C., Murga, M. A., Gil, J. A., Téllez, J. A. y Trillo, M. P. (2010). Hacia un modelo sociocultural explicativo del alto rendimiento y la alta capacidad: Ámbito académico y capacidades personales. Educación XX1, 13(1), 125-153.

Jones, M., Gardner, G., Taylor, A. Wiebe, E., & Forrester, J. (2011). Conceptualizing magnification and scale: The roles of spatial visualization and logical thinking. Research in Science Education, 41(3), 357-368. doi: 10.1007/s11165-010-9169-2.

Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59(3), 381-389. doi:10.1007/BF02296131.

Kikas, E., Peets, K., Palu, A. & Afanasjev, J. (2014) The role of individual and contextual factors in the development of maths skills. Educational Psychology: An International Journal of Experimental Educational Psychology, 29(5), 541-560. doi: 10.1080/01443410903118499.

Klauer, K. & Phye, G. (2008). Inductive reasoning: A training approach. Review of Educational Research, 78(1), 85-123.

Lee, J. & Stankov, L. (2013). Higherorder structure of noncognitive constructs and prediction of PISA 2003 mathematics achievement. Learning and Individual Differences, 26, 119-130. doi: 10.1016/j.lindif.2013.05.004.

Lee, S. Y. & Chapman, E. (2013). Development of a short form of the attitudes toward mathematics inventory. Educational Studies in Mathematics, 82, 145-164.

Marchisa, L. (2011). Factors that influence secondary school students’ attitude to Mathematics. Social and Behavioral Sciences, 29, 786-793. doi:10.1016/j.sbspro.2011.11.306.

Maris, S. & Difabio, H. (2009). Logro académico y pensamiento formal en estudiantes de ingeniería. Electronic Journal of Research in Educational Psychology, 7(2), 653-672.

Martín, E., Martínez-Arias, R., Marchesi, A. & Pérez, E. (2008). Variables that predict academic achievement in the Spanish compulsory Secondary Educational System: A longitudinal multilevel analysis. The Spanish Journal of Psychology, 11(2), 400-413.

Miñano, P. y Castejón, J. L. (2011). Variables cognitivas y motivacionales en el rendimiento académico en Lengua y Matemáticas: un modelo estructural. Revista de Psicodidáctica, 16(2), 203-230.

Moenikia, M. & Zahed-Babelan, A. (2010). A study of simple and multiple relations between mathematics attitude, academic motivation and intelligence quotient with mathematics achievement. Social and Behavioral Sciences, 2, 1537-1542. doi:10.1016/j.sbspro.2010.03.231.

Molera, J. (2012). ¿Existe relación en la Educación Primaria entre los factores afectivos en las Matemáticas y el rendimiento académico? Estudios sobre Educación, 23, 141-155.

Morony, S., Kleitman, S., Ping Lee, Y. & Stankov, L. (2013). Predicting achievement: Confidence vs self-efficacy, anxiety, and self-concept in Confucian and European countries. International Journal of Educational Research 58, 79-96. doi: 10.1016/j.ijer.2012.11.002.

Nasiriyan, A. Azar, H. K. Noruzy, A. & Dalvand, M. R. (2011). A model of selfefficacy, task value, achievement goals, effort and mathematics achievement. International Journal of Academic Research, 3(2), 612-618.

Navarro, J., Aguilar, M., Marchena, E., Ruiz, G. y Ramiro, P. (2011). Desarrollo operatorio y conocimiento aritmético: vigencia de la teoría piagetiana. Revista de Psicodidáctica, 16(2), 251-266. doi: 10.1387/RevPsicodidact.970.

Nosek, B. A. & Smyth, F. L. (2011). Implicit social cognitions predict sex differences in math engagement and achievement. American Educational Research Journal, 48, 1124-1154. doi: 10.3102/0002831211410683.

Nuñez, T., Bryant, P., Evans, D., Bell, D., Gardner, S., Gardner, A. & Carraher, J. (2007). The contribution of logical reasoning to the learning of mathematics in primary school. British Journal of Developmental Psychology, 25, 147-166. DOI:10.1348/026151006X153127.

Núñez-Peña, M., Suárez-Pellicioni, M. & Bono, R. (2013). Effects of math anxiety on student success in higher education. International Journal of Educational Research 58, 36-43. doi: 10.1016/j.ijer.2012.12.004.

Orrantia, J., Tarín, J. y Vicente, S. (2011). El uso de la información situacional en la resolución de problemas aritméticos. Infancia y Aprendizaje, 34(1), 81-94.

Parker, P., Marsh, H., Ciarrochia, J., Marshall, S. & Abduljabbarc, A. (2014). Juxtaposing math self-efficacy and self-concept as predictors of longterm achievement outcomes. Educational Psychology. 34(1), 29-48. doi: 10.1080/01443410.2013.797339.

Rosario, P., Laurenço, A., Paiva, O., Rodrigues, A., Valle, A. y Tuero-Herrero, E. (2012). Predicción del rendimiento en matemáticas: efecto de variables personales, socioeducativas y del contexto escolar. Psicothema, 24(2), 289-295.

Roselli, M., Ardila, A., Matute, E. & Inozemtseva, O. (2009). Differences and cognitive correlates of mathematical skills in school-aged children. Child Neuropsychology, 15(3), 216-231. doi:10.1080/09297040802195205.

Samuelsson, J. & Granström, K. (2007). Important prerequisites for students’ mathematical achievement. Journal of Theory and Practice in Education, 3, 150-170.

Satorra, A. & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507-514. doi:10.1007/BF02296192.

Schweinle, A., Meyer, D. & Turner, J. (2006). Striking the right balance: Student’s motivation and affect in upper elementary mathematics classes. Journal of Educational Research, 99(5), 271-293.

Selkirk, L., Bouchey, H. & Eccles, J. (2011). Interactions among domainspecific expectancies, values, and gender: Predictors of test anxiety during early adolescence. Journal of Early Adolescence, 31(3), 361-389. doi: 10.1177/0272431610363156.

Shim, S., Ryan, A. & Anderson, C. (2008). Achievement goals and Achievement during early adolescence: Examining time-varying predictor and outcome variables in growth-curve analysis. Journal of Educational Psychology, 100(3), 655-671. doi: 10.1037/0022-0663.100.3.655.

Suárez-Álvarez, J. Fernández, R. & Muñiz, J. (2013). Self-concept, motivation, expectations, and socioeconomic level as predictors of academic performance in mathematics. Learning and Individual Differences, doi: 10.1016/j.lindif.2013.10.019.

Taub, G., Floyd, R., Keith, T. & McGrew, K. (2008). Effects of general and broad cognitive abilities on mathematics achievement. School Psychology Quarterly, 23(2), 187-198.

Thoman, D., Smith, J., Brown, E., Chase, J. & Lee, J. (2013). Beyond Performance: A Motivational Experiences Model of Stereotype Threat. Educational Psychology Review, 25(2), 211-243. doi: 10.1007/s10648-013-9219-1.

Valle, A., Cabanach, R. G., Núñez, J. C., González-Pienda, J. A., Rodríguez, S. & Piñeiro, I. (2003). Cognitive, motivational and volitional dimensions of learning. Research in Higher Education, 44(5), 557-580.

Vandecandelaere, M., Speybroeck, S., Vanlaar, G., De Fraine, G. & Van Damme, J. (2012). Learning environment and students’ mathematics attitude. Studies in Educational Evaluation, 38, 107-120. doi: 10.1016/j.stueduc.2012.09.001.

Yaratan, H. & Kasapoğlu, L. (2012). Eighth grade students’ attitude, anxiety, and achievement pertaining to mathematics lessons. Social and Behavioral Sciences 46, 162-171. doi: 10.1016/j.sbspro.2012.05.087.

Zan, R., Brown, L., Evans, J. & Hannula, M. (2006). Affect in mathematics education: An introduction. Educational Studies in Mathematics, 63, 113-121. doi: 10.1007/s10649-006-9028-2.

Published

2021-06-26

Issue

Section

Estudios