A review of concepts and methods for research with longitudinal data

Authors

DOI:

https://doi.org/10.5944/ap.22.1.43402

Keywords:

longitudinal research, change, repeated measures

Abstract

In psychology, understanding how phenomena influence one another and develop over time is key for grasping their causes, consequences, and underlying mechanisms. In this article, we present a review of the fundamental aspects in­volved in investigating longitudinal processes of change. We begin by exploring the types of questions that guide such investigations, distinguishing between interest in the outcomes of a process (e.g., do symptoms decrease after therapy?), the development of the phenomenon itself (how do cognitive abilities evolve during childhood?), differ­ences between individuals (why do some people learn faster than others?), and individual processes of change (how does an individual's affect fluctuate over time?). We then address the dynamic nature of phenomena and their potential patterns of change, such as growth trajectories or fluctuations around a stable equilibrium. We also discuss research designs appropriate for capturing these dynamics. Finally, we review the main statistical models available to study the functioning and development of these processes. We hope that this review and the references to the litera­ture provided will be useful for researchers interested in studying processes of change

Downloads

Download data is not yet available.

Author Biographies

Eduardo Estrada, Universidad Autónoma de Madrid

Departamento de Psicología Social y Metodología

Pablo F. Cáncer, Universidad Pontificia Comillas, Madrid

Departamento de Psicología.

Nuria Real-Brioso, Universidad Autónoma de Madrid

Departamento de Psicología Social y Metodología.

References

Bell, R. Q. (1953). Convergence: An Accelerated Longitudinal Approach. Child Development, 24(2), 145–152. https://doi.org/10.2307/1126345

Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., Robinaugh, D. J., Perugini, M., Dalege, J., Costantini, G., Isvoranu, A.-M., Wysocki, A. C., van Borkulo, C. D., van Bork, R. y Waldorp, L. J. (2021). Network Analysis of Multivariate Data in Psychological Science. Nature Reviews Methods Primers, 1(1), 1–18. https://doi.org/10.1038/s43586-021-00055-w

Cáncer, P. F., Estrada, E., Ollero, M. J. F. y Ferrer, E. (2021). Dynamical Properties and Conceptual Interpretation of Latent Change Score Models. Frontiers in Psychology, 12, Artículo 696419. https://doi.org/10.3389/fpsyg.2021.696419

Driver, C. C. y Voelkle, M. C. (2018). Hierarchical Bayesian Continuous Time Dynamic Modeling. Psychological Methods, 23(4), 774–799. http://dx.doi.org/10.1037/met0000168

Epskamp, S. (2020). Psychometric Network Models from Time-Series and Panel Data. Psychometrika, 85(1), 206–231. https://doi.org/10.1007/s11336-020-09697-3

Ernst, A. F., Albers, C. J. y Timmerman, M. E. (2024). A Comprehensive Model Framework for between-Individual Differences in Longitudinal Data. Psychological Methods, 29(4), 748–766. https://doi.org/10.1037/met0000585

Estrada, E. y Ferrer, E. (2019). Studying Developmental Processes in Accelerated Cohort-Sequential Designs with Discrete- and Continuous-Time Latent Change Score Models. Psychological Methods, 24(6), 708–734. https://doi.org/10.1037/met0000215

Estrada, E., Sbarra, D. A. y Ferrer, E. (2020). Models for Dyadic Data. En A. G. C. Wright y M. N. Hallquist (Eds.), The Cambridge Handbook of Research Methods in Clinical Psychology (pp. 350–368). Cambridge University Press. https://doi.org/10.1017/9781316995808.033

Ferrer, R. y Pardo, A. (2019). Clinically Meaningful Change. Methodology, 15(3), 97–105. https://doi.org/10.1027/1614-2241/a000168

Fritz, J., Piccirillo, M. L., Cohen, Z. D., Frumkin, M., Kirtley, O., Moeller, J., Neubauer, A. B., Norris, L. A., Schuurman, N. K., Snippe, E. y Bringmann, L. F. (2024). So You Want to Do ESM? 10 Essential Topics for Implementing the Experience-Sampling Method. Advances in Methods and Practices in Psychological Science, 7(3), 1–27. https://doi.org/10.1177/25152459241267912

Grimm, K. J., Ram, N. y Estabrook, R. (2017). Growth Modeling: Structural Equation and Multilevel Modeling Approaches. Guilford Press.

Hoffman, L. (2015). Longitudinal Analysis: Modeling within-Person Fluctuation and Change. Routledge.

Hunter, M. D. (2018). State Space Modeling in an Open Source, Modular, Structural Equation Modeling Environment. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 307–324. https://doi.org/10.1080/10705511.2017.1369354

Hunter, M. D., Fisher, Z. F. y Geier, C. F. (2024). What Ergodicity Means for you. Developmental Cognitive Neuroscience, 68, 1–16. https://doi.org/10.1016/j.dcn.2024.101406

McNeish, D. y Hamaker, E. L. (2020). A Primer on Two-Level Dynamic Structural Equation Models for Intensive Longitudinal Data in Mplus. Psychological Methods, 25(5), 610–635. https://doi.org/10.1037/met0000250

Mestdagh, M., Verdonck, S., Piot, M., Niemeijer, K., Kilani, G., Tuerlinckx, F., Kuppens, P. y Dejonckheere, E. (2023). m-Path: An Easy-to-use and Highly Tailorable Platform for Ecological Momentary Assessment and Intervention in Behavioral Research and Clinical Practice. Frontiers in Digital Health, 5, Artículo 1182175. https://doi.org/10.3389/fdgth.2023.1182175

Mongin, D., Uribe, A., Cullati, S. y Courvoisier, D. S. (2024). A Tutorial on Ordinary Differential Equations in Behavioral Science: What does Physics Teach us? Psychological Methods, 29(5), 980–1002. https://doi.org/10.1037/met0000517

Mulder, J. D. y Hamaker, E. L. (2021). Three Extensions of the Random Intercept Cross-Lagged Panel Model. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 638–648. https://doi.org/10.1080/10705511.2020.1784738

Usami, S., Murayama, K. y Hamaker, E. L. (2019). A Unified Framework of Longitudinal Models to Examine Reciprocal Relations. Psychological Methods, 24(5), 637–657. https://doi.org/10.1037/met0000210

Voelkle, M. C., Gische, C., Driver, C. C. y Lindenberger, U. (2018). The Role of Time in the Quest for Understanding Psychological Mechanisms. Multivariate Behavioral Research, 53(6), 782–805. https://doi.org/10.1080/00273171.2018.1496813

Widaman, K. F., Ferrer, E. y Conger, R. D. (2010). Factorial Invariance Within Longitudinal Structural Equation Models: Measuring the Same Construct Across Time. Child Development Perspectives, 4(1), 10–18. https://doi.org/10.1111/j.1750-8606.2009.00110.x

Published

2025-06-30

How to Cite

Estrada, E., Cáncer, P. F., & Real-Brioso, N. (2025). A review of concepts and methods for research with longitudinal data. Acción Psicológica, 22(1), 73–86. https://doi.org/10.5944/ap.22.1.43402

Issue

Section

Special Issue: New methodological advances in psychology

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.