A review of concepts and methods for research with longitudinal data
DOI:
https://doi.org/10.5944/ap.22.1.43402Keywords:
longitudinal research, change, repeated measuresAbstract
In psychology, understanding how phenomena influence one another and develop over time is key for grasping their causes, consequences, and underlying mechanisms. In this article, we present a review of the fundamental aspects involved in investigating longitudinal processes of change. We begin by exploring the types of questions that guide such investigations, distinguishing between interest in the outcomes of a process (e.g., do symptoms decrease after therapy?), the development of the phenomenon itself (how do cognitive abilities evolve during childhood?), differences between individuals (why do some people learn faster than others?), and individual processes of change (how does an individual's affect fluctuate over time?). We then address the dynamic nature of phenomena and their potential patterns of change, such as growth trajectories or fluctuations around a stable equilibrium. We also discuss research designs appropriate for capturing these dynamics. Finally, we review the main statistical models available to study the functioning and development of these processes. We hope that this review and the references to the literature provided will be useful for researchers interested in studying processes of change
Downloads
References
Bell, R. Q. (1953). Convergence: An Accelerated Longitudinal Approach. Child Development, 24(2), 145–152. https://doi.org/10.2307/1126345
Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., Robinaugh, D. J., Perugini, M., Dalege, J., Costantini, G., Isvoranu, A.-M., Wysocki, A. C., van Borkulo, C. D., van Bork, R. y Waldorp, L. J. (2021). Network Analysis of Multivariate Data in Psychological Science. Nature Reviews Methods Primers, 1(1), 1–18. https://doi.org/10.1038/s43586-021-00055-w
Cáncer, P. F., Estrada, E., Ollero, M. J. F. y Ferrer, E. (2021). Dynamical Properties and Conceptual Interpretation of Latent Change Score Models. Frontiers in Psychology, 12, Artículo 696419. https://doi.org/10.3389/fpsyg.2021.696419
Driver, C. C. y Voelkle, M. C. (2018). Hierarchical Bayesian Continuous Time Dynamic Modeling. Psychological Methods, 23(4), 774–799. http://dx.doi.org/10.1037/met0000168
Epskamp, S. (2020). Psychometric Network Models from Time-Series and Panel Data. Psychometrika, 85(1), 206–231. https://doi.org/10.1007/s11336-020-09697-3
Ernst, A. F., Albers, C. J. y Timmerman, M. E. (2024). A Comprehensive Model Framework for between-Individual Differences in Longitudinal Data. Psychological Methods, 29(4), 748–766. https://doi.org/10.1037/met0000585
Estrada, E. y Ferrer, E. (2019). Studying Developmental Processes in Accelerated Cohort-Sequential Designs with Discrete- and Continuous-Time Latent Change Score Models. Psychological Methods, 24(6), 708–734. https://doi.org/10.1037/met0000215
Estrada, E., Sbarra, D. A. y Ferrer, E. (2020). Models for Dyadic Data. En A. G. C. Wright y M. N. Hallquist (Eds.), The Cambridge Handbook of Research Methods in Clinical Psychology (pp. 350–368). Cambridge University Press. https://doi.org/10.1017/9781316995808.033
Ferrer, R. y Pardo, A. (2019). Clinically Meaningful Change. Methodology, 15(3), 97–105. https://doi.org/10.1027/1614-2241/a000168
Fritz, J., Piccirillo, M. L., Cohen, Z. D., Frumkin, M., Kirtley, O., Moeller, J., Neubauer, A. B., Norris, L. A., Schuurman, N. K., Snippe, E. y Bringmann, L. F. (2024). So You Want to Do ESM? 10 Essential Topics for Implementing the Experience-Sampling Method. Advances in Methods and Practices in Psychological Science, 7(3), 1–27. https://doi.org/10.1177/25152459241267912
Grimm, K. J., Ram, N. y Estabrook, R. (2017). Growth Modeling: Structural Equation and Multilevel Modeling Approaches. Guilford Press.
Hoffman, L. (2015). Longitudinal Analysis: Modeling within-Person Fluctuation and Change. Routledge.
Hunter, M. D. (2018). State Space Modeling in an Open Source, Modular, Structural Equation Modeling Environment. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 307–324. https://doi.org/10.1080/10705511.2017.1369354
Hunter, M. D., Fisher, Z. F. y Geier, C. F. (2024). What Ergodicity Means for you. Developmental Cognitive Neuroscience, 68, 1–16. https://doi.org/10.1016/j.dcn.2024.101406
McNeish, D. y Hamaker, E. L. (2020). A Primer on Two-Level Dynamic Structural Equation Models for Intensive Longitudinal Data in Mplus. Psychological Methods, 25(5), 610–635. https://doi.org/10.1037/met0000250
Mestdagh, M., Verdonck, S., Piot, M., Niemeijer, K., Kilani, G., Tuerlinckx, F., Kuppens, P. y Dejonckheere, E. (2023). m-Path: An Easy-to-use and Highly Tailorable Platform for Ecological Momentary Assessment and Intervention in Behavioral Research and Clinical Practice. Frontiers in Digital Health, 5, Artículo 1182175. https://doi.org/10.3389/fdgth.2023.1182175
Mongin, D., Uribe, A., Cullati, S. y Courvoisier, D. S. (2024). A Tutorial on Ordinary Differential Equations in Behavioral Science: What does Physics Teach us? Psychological Methods, 29(5), 980–1002. https://doi.org/10.1037/met0000517
Mulder, J. D. y Hamaker, E. L. (2021). Three Extensions of the Random Intercept Cross-Lagged Panel Model. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 638–648. https://doi.org/10.1080/10705511.2020.1784738
Usami, S., Murayama, K. y Hamaker, E. L. (2019). A Unified Framework of Longitudinal Models to Examine Reciprocal Relations. Psychological Methods, 24(5), 637–657. https://doi.org/10.1037/met0000210
Voelkle, M. C., Gische, C., Driver, C. C. y Lindenberger, U. (2018). The Role of Time in the Quest for Understanding Psychological Mechanisms. Multivariate Behavioral Research, 53(6), 782–805. https://doi.org/10.1080/00273171.2018.1496813
Widaman, K. F., Ferrer, E. y Conger, R. D. (2010). Factorial Invariance Within Longitudinal Structural Equation Models: Measuring the Same Construct Across Time. Child Development Perspectives, 4(1), 10–18. https://doi.org/10.1111/j.1750-8606.2009.00110.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Faculty of Psychology. Applied Psychology Service (UNED)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accion Psicologica is published under Creative Commons Attribution-Non Commercial (CC BY-NC). The opinions and contents of the articles published in Acción Psicológica are responsibility of the authors and do not compromise the scientific and political opinion of the journal. Authors are also responsible for providing copies of the raw data, ratings, and, in general, relevant experimental material to interested readers.





