A model based on the Naïve Bayes Classifier for teacher performance assessment

Authors

DOI:

https://doi.org/10.5944/ried.20.2.17717

Keywords:

Sentiment analysis, Naïve Bayes, corpus, subjectivity, ROC curve, mobile device, teacher performance assessment, educational planning, case study.

Abstract

The evaluation of teacher performance is an important measurement process in Mexico's higher education institutions and around the world, because it allows feedback on the teacher’s performance to detect improvements in classes and propose strategies for the benefit of students' education. This paper describes the development and evaluation of a proposed computational model called SocialMining, which is based on the classifier algorithm Naïve Bayes to support the analysis of students' opinions from the process of teachers' performance evaluation, which is carried out through mobile devices. The mobile device revolutionizes processes in education; the proposal considers the use of this technology for the collection of data, taking advantage of processing capacity and acceptance by students in the process of education and learning. It also describes the development of a set of relevant affective terms of the teacher evaluation called corpus of subjectivity, which supports the Naïve Bayes algorithm to classify students' comments within the classes: positive, negative and neutral. To measure the comments classification performance of the SocialMining Computational Model, metrics such as the confusion matrix, precision, sensitivity, specificity and the ROC curve are used. Likewise, a study case is presented, which gathers new comments from students of the Polytechnic University of Aguascalientes (Mexico), in order to test the classification process performance of the proposed model. The results show that SocialMining Computational Model is feasible to be implemented in institutions to support Teacher Performance Assessment. Besides, our results show that Naïve Bayes can obtain a classification percentage very similar to those reported in recent works with related algorithms.

Downloads

Author Biographies

Guadalupe Gutiérrez Esparza, Universidad Politécnica de Aguascalientes

Profesora de Tiempo Completo

Lourdes Margain Fuentes, Universidad Politécnica de Aguascalientes

Directora de Sistemas

Juana Canul Reich, Universidad Juárez Autónoma de Tabasco

Profesora de Tiempo Completo

Tania Aglaé Ramírez del Real, Universidad Politécnica de Aguascalientes

Profesora de Tiempo Completo

References

Altrabsheh, N., Cocea, M., & Fallahkhair, S. (2014). Learning Sentiment from Students’ Feedback for Real-Time Interventions in Classrooms. Adaptive and Intelligent Systems. Volume 8779 of the series Lecture Notes in Computer Science, 40-49. doi: http://dx.doi.org/10.1007/978-3-319-11298-5_5.

Arrabal-Sánchez, G., & De-Aguilera-Monyano, M. (2016). Comunicar en 140 caracteres. Cómo usan Twitter los comunicadores en España. Revista Científica de Educomunicación. Comunicar, no. 46, v. XXIV. (9-17), Recuperado de http://goo.gl/YOqybX

Bayes, T. a. P., M. (1763). An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs. Philosophical Transactions (1683-1775), 370-418.

Bravo, E., Pedraza, A., & Herrera, L. (2013). Educación 2.0: Twitter como herramienta de aprendizaje de la Ingeniería. Latin American and Caribbean Consortium of Engineering Institution.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11(1-2), 87-110.

Cantillo, V., & Roura, R., & Sánchez, P. (2012). Tendencias Actuales en el uso de dispositivos móviles en educación. La Educación Digital Magazine, no147

Córdova, K. E. G., & González, J. R. V. (2015). Evaluación del desempeño: acercando la investigación educativa a los docentes. REVALUE, 2015, 3(2). Recuperado de http://revalue.mx/revista/index.php/revalue/issue/current.

Crovi, D., & Lemus, M.C. (2014). Jóvenes estudiantes y cultura digital: una investigación en proceso. Virtualis, 9, 36-55. Recuperado de http://goo.gl/8emHtj

Elizalde Lora, Leticia, & Reyes Chávez, Rafael. (2008). Key Elements for the Evaluation of the Teaching Performance. Revista electrónica de investigación educativa, 10(spe), 1-13.

Gewerc, A., Montero, L. & Lama, M. (2014). Colaboración y redes sociales en la enseñanza universitaria [Collaboration and Social Networking in Higher Education]. Comunicar, 21(42), 55-63. https://doi.org/10.3916/C42-2014-05

González-Lizárraga, M., Becerra-Traver, M. & Yanez-Díaz, M. (2016). Ciberactivismo: nueva forma de participación para estudiantes universitarios. Comunicar, 24(46), 47-54, doi: http://dx.doi.org/10.3916/C46-2016-05

Guerrero, C., Jaume, A., Juiz, C. y Lera, I. (2016). Use of Mobile Devices in the Classroom to Increase Motivation and Participation of Engineering University Students. IEEE Latin America Transactions, 14(1), 411-416.

Gupte, A., Joshi, S., Gadgul, P., & Kadam, A. (2014). Comparative Study of Classification Algorithms used in Sentiment Analysis. International Journal of Computer Science and Information Technologies; 5(5), 6261-6264, Recuperado de http://goo.gl/tiIHBT

Gutiérrez, G., Padilla, A., Canul-Recih, J., De-Luna, P., & Ponce, J. (2016). Proposal of a Sentiment Analysis Model in Tweets for improvement of the teaching - learning process in the classroom using a corpus of subjectivity. International Journal of Combinatorial Optimization Problems and Informatics, 7(2), 22-34.

Jurka, T. (2012). Sentiment: Tools for Sentiment Analysis. R package version 0.1, Recuperado de http://goo.gl/oxASCV

Kaur, G., & Singla, A. (2016). Sentimental Analysis of Flipkart reviews using Naïve Bayes and Decision Tree algorithm. International Journal of Advanced Research in Computer Engineering & Technology. 5(1), 148-153.

Liu, B. (2010). Sentiment Analysis and Subjectivity. In N. Indurkhia & F. J. Damerau (Eds.). Handbook of natural language processing, 627-666. Chapman and Hall: CRC Press.

Loureiro, Silvia, Míguez, Marina, & Otegui, Ximena. (2016). Desempeño docente en la enseñanza universitaria: análisis de las opiniones estudiantiles. Cuadernos de Investigación Educativa, 7(1), 55-67. Recuperado de https://goo.gl/hm1eAq

Martínez González, Adrián, Sánchez Mendiola, Melchor, & Martínez Stack, Jorge. (2010). Los cuestionarios de opinión del estudiante sobre el desempeño docente: Una estrategia institucional para la evaluación de la enseñanza en Medicina. Revista electrónica de investigación educativa, 12(1), 1-18.

Mejova, Y. (2009). Sentiment Analysis: An Overview. Comprehensive Exam Paper. Recuperado de https://goo.gl/xsFTV9

Moreno, R. D., Cepeda, I. M. L. y Romero, S. P. (2004). El modelo de evaluación, intervención y análisis de procesos como propuesta de diseño instruccional. Enseñanza e Investigación en Psicología. 9(2), 271-291.

Novak, J., & Cowling, M. (2011). The implementation of social networking as a tool for improving student participation in the classroom. Hobart : ISANA International Education Association Inc. Recuperado de http://goo.gl/IW6Igc.

Ortigosa, A., Martín, J. & Carro, R. (2014). Sentiment analysis in Facebook and its application to e-learning. Computers in Human Behavior, 31, 527-541, doi: http://dx.doi.org/10.1016/j.chb.2013.05.024.

Prasad, S. (2010). Micro-blogging Sentiment Analysis Using Bayesian Classification Methods. CS224N Project Report, Stanford. Recuperado de http://goo.gl/W2koQT

R-Core-Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de http://goo.gl/e40yiU.

Riloff, E., & Wiebe, J. (2003). Learning extraction patterns for subjective expressions. Conference on Empirical Methods in Natural Language Processing, 105-112. Recuperado de https://goo.gl/se0aIg.

Ruiz Carrascosa J. (2005). La evaluación de la docencia en los planes de mejora de la Universidad, Educación XXI, 8, 87-102.

Salton, G., & McGill, M. J. (1986). Introduction to modern information retrieval.

Spackman, K. A. (1989). Signal detection theory: Valuable tools for evaluating inductive learning. Proceedings of the Sixth International Workshop on Machine Learning. San Mateo, CA: Morgan Kaufman, 160–163.

Tan, S., Cheng, X., Wang, Y., and Xu, H. (2009). Adapting naive bayes to domain adaptation for sentiment analysis. In Advances in Information Retrieval, 337-349.

Tirado Segura, Felipe, Miranda Díaz, Alejandro, & Sánchez Moguel, Andrés. (2007). La evaluación como proceso de legitimidad: la opinión de los alumnos. Reporte de una experiencia. Perfiles educativos, 29(118), 7-24.

Valencia, A., González G. y Castañeda M. (2016). Structural Equation Model for Studying the Mobile-Learning Acceptance. IEEE Latin America Transactions, 14(4), 1988-1992.

Zaldivar, A., Tripp, A., Aguilar, J., Tovar, J. y Anguiano C. (2015). Using Mobile Technologies to Support Learning in Computer Science Students. IEEE Latin America Transactions, 13(1), 377-382.

Published

2017-07-01

How to Cite

Gutiérrez Esparza, G., Margain Fuentes, L., Canul Reich, J., & Ramírez del Real, T. A. (2017). A model based on the Naïve Bayes Classifier for teacher performance assessment. RIED-Revista Iberoamericana de Educación a Distancia, 20(2), 293–313. https://doi.org/10.5944/ried.20.2.17717

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 > >> 

You may also start an advanced similarity search for this article.