Introducción al metaanálisis multivariado con modelos de ecuaciones estructurales

Autores/as

DOI:

https://doi.org/10.5944/ap.22.1.43279

Palabras clave:

Metaanálisis, Modelos de ecuaciones estructurales, Síntesis de la evidencia , MASEM

Resumen

El meta-análisis con modelos de ecuaciones estructurales (Meta-Analytic Structural Equation Modeling, MASEM) es una metodología novedosa de síntesis de la evidencia que combina las ventajas del metaanálisis tradicional con los modelos de ecuaciones estructurales, permitiendo explorar relaciones complejas entre variables a través de la integración de estudios independientes. Este tutorial ofrece una introducción accesible a la metodología MASEM, incluyendo los conceptos fundamentales, los pasos metodológicos para su implementación, y una aplicación práctica usando software estadístico libre. El objetivo es proporcionar a los investigadores una comprensión sólida y las herramientas necesarias para aplicar MASEM en sus propios estudios. Para ello se aborda desde la preparación de datos hasta la interpretación de resultados, destacando tanto las fortalezas como las limitaciones de esta metodología.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Raimundo Aguayo-Estremera , Universidad Complutense de Madrid

Facultad de Psicología

Laura Badenes-Ribera, Universitat de Valencia

Facultad de Psicología

Belén Fernández-Castilla, Universidad Nacional de Educación a Distancia

Facultad de Psicología

Citas

Aguayo-Estremera, R., Cañadas-De la Fuente, G. R., Ariza-Castilla, T., Ortega-Campos, E., Gómez-Urquiza, J. L., Romero-Béjar, J. L. y De la Fuente-Solana, E. I. (2024). A Comparison of Univariate and meta-Analytic Structural Equation Modelling Approaches to Reliability Generalization Applied to the Maslach Burnout Inventory. Frontiers in Psychology, 15, Artículo 1383619. https://doi.org/10.3389/fpsyg.2024.1383619

Becker, B. J. (1992). Using Results from Replicated Studies to Estimate Linear Models. Journal of Educational Statistics, 17, 341–362. https://doi.org/10.3102/10769986017004341

Becker, B. J. (1995). Corrections to “Using results from Replicated Studies to Estimate Linear Models”. Journal of Educational and Behavioral Statistics, 20, 100–102. https://doi.org/10.3102/10769986020001100

Becker, B. J. y Aloe, A. M. (2019). Model-based Meta-analysis. En H. Cooper, L. V. Hedges y J. C. Valentine, The Handbook of Research Synthesis and Meta-analysis (3ª ed, pp. 339-363). Russell Sage.

Bilici, Z. Ş., Van den Noortgate, W. y Jak, S. (2025). Six ways to handle dependent effect sizes in meta-analytic structural equation modeling: Is there a gold standard? Research Synthesis Methods, 0, 1–27. https://doi.org/10.1017/rsm.2024.10

Borenstein, M., Hedges, L. V., Higgins, J. P. T. y Rothstein, H. R. (2010). A basic introduction to fixed‐effect and random‐effects models for meta‐analysis. Research Synthesis Methods, 1, 97-111. https://doi.org/10.1002/jrsm.12

Borenstein, M., Higgins, J. P. T., Hedges, L. V. y Rothstein, H. R. (2017). Basics of meta‐analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8, 5–18. https://doi.org/10.1002/jrsm.1230

Botella, J. y Meca, J. S. (2015). Metaanálisis en ciencias sociales y de la salud [Meta-analysis in Social and Health Sciences]. Síntesis.

Cano-López, J. B., Garcia-Sancho, E., Fernández-Castilla, B. y Salguero, J. M. (2022). Empirical Evidence of the Metacognitive Model of Rumination and Depression in Clinical and Nonclinical Samples: A Systematic Review and Meta-Analysis. Cognitive Therapy and Research, 46(6), 1–26. https://doi.org/10.1007/s10608-021-10260-2

Cooper, H., Hedges, L. V. y Valentine, J. C. (Eds.). (2019). The Handbook of Research Synthesis and Meta-Analysis. Sage.

Cheung, M. W.-L. (2013). Multivariate Meta-Analysis as Structural Equation Models. Structural Equation Modeling, 20, 429–454. https://doi.org/10.1080/10705511.2013.797827

Cheung, M. W.-L. (2015). Meta-analysis: A Structural Equation Modeling Approach. Wiley.

Cheung, M. W.-L. (2015). metaSEM: an R Package for Meta-Analysis Using Structural Equation Modeling. Frontiers in Psychology, 5, Artículo 1521. https://doi.org/10.3389/fpsyg.2014.01521

Cheung, M. W.-L. (2009). Constructing Approximate Confidence Intervals for Parameters with Structural Equation Models. Structural Equation Modeling: A Multidisciplinary Journal, 16, 267–294. https://doi.org/10.1080/10705510902751291

Cheung, M. W.-L. (2019). Some Reflections on Combining Meta-Analysis and Structural Equation Modeling. Research Synthesis Methods, 10, 15–22. https://doi.org/10.1002/jrsm.1321

Cheung, M. W.-L. y Chan, W. (2005). Meta-analytic Structural Equation Modeling: A Two-Stage Approach. Psychological Methods, 10, 40–64. https://doi.org/10.1037/1082-989X.10.1.40

Cheung, M. W.-L. y Cheung, S. F. (2016). Random-Effects Models for Meta-Analytic Structural Equation Modeling: Review, Issues, and Illustrations. Research Synthesis Methods, 7, 140–155. https://doi.org/10.1002/jrsm.1166

Cronbach, L. J. (1951). Coefficient Alpha and the Internal Structure Of Tests. Psychometrika, 16, 297–334. https://doi.org/10.1007/BF02310555

De Jonge, H., Jak, S. y Kan, K. J. (2020). Dealing with Artificially Dichotomized Variables in Meta-Analytic Structural Equation Modeling. Zeitschrift für Psychologie, 228, 25–35. https://doi.org/10.1027/2151-2604/a000395

Glass, G. V. (1976). Primary, Secondary, and Meta-Analysis of Research. Educational Researcher, 5, 3–8. https://doi.org/10.3102/0013189X005010003

Grissom, R. J. y Kim, J. J. (2012). Effect Sizes for Research: Univariate and Multivariate Applications (2ª Ed.). Routledge.

Groot, L. J., Kan, K. J. y Jak, S. (2024). Checking the Inventory: Illustrating Different Methods for Individual Participant Data Meta‐Analytic Structural Equation Modeling. Research Synthesis Methods, 15, 872–895. https://doi.org/10.1002/jrsm.1735

Hattie, J. (2008). Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement. Routledge.

Hedges, L. V. y Vevea, J. L. (1998). Fixed-and Random-Effects Models in Meta-Analysis. Psychological Methods, 3, 486–504. https://doi.org/10.1037/1082-989X.3.4.486

Higgins, J. P. T. y Thompson, S. G. (2002). Quantifying Heterogeneity in a Meta‐Analysis. Statistics in Medicine, 21, 1539–1558. https://doi.org/10.1002/sim.1186

Hu, L. T. y Bentler, P. M. (1999). Cutoff Criteria for fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Jak, S. (2015). Meta-analytic Structural Equation Modelling. Springer https://doi.org/10.1007/978-3-319-27174-3

Jak, S. y Cheung, M. W.-L. (2018a). Accounting for Missing Correlation Coefficients in Fixed-Effects MASEM. Multivariate Behavioral Research, 53, 1–14. https://doi.org/10.1080/00273171.2017.1375886

Jak, S. y Cheung, M. W.-L. (2018b). Testing Moderator Hypotheses in Meta-Analytic Structural Equation Modeling using Subgroup Analysis. Behavior Research Methods, 50, 1359–1373. https://doi.org/10.3758/s13428-018-1046-3

Jak, S. y Cheung, M. W.-L. (2020). Meta-analytic Structural Equation Modeling with Moderating Effects on SEM Parameters. Psychological Methods, 25, 430–455. https://doi.org/10.1037/met0000245

Jak, S., Li, H., Kolbe, L., de Jonge, H. y Cheung, M. W.-L. (2021). Meta‐analytic Structural Equation Modeling Made Easy: A Tutorial and Web Application for One‐Stage MASEM. Research Synthesis Methods, 12, 590–606. https://doi.org/10.1002/jrsm.1498

Kline, R. B. (2023). Principles and Practice of Structural Equation Modeling (5ª ed.). Guilford.

Lei, P. W. y Wu, Q. (2007). Introduction to Structural Equation Modeling: Issues and Practical Considerations. Educational Measurement: Issues and Practice, 26, 33–43. https://doi.org/10.1111/j.1745-3992.2007.00099.x

López‐López, J. A., Page, M. J., Lipsey, M. W. y Higgins, J. P. T. (2018). Dealing with Effect Size Multiplicity in Systematic Reviews and Meta‐Analyses. Research Synthesis Methods, 9, 336–351. https://doi.org/10.1002/jrsm.1310

Maslach, C. y Jackson, S. E. (1981). The Measurement of Experienced Burnout. Journal of Organizational Behavior, 2, 99–113. https://doi.org/10.1002/job.4030020205

McArdle, J. J. y McDonald, R. P. (1984). Some Algebraic Properties of the Reticular Action Model for Moment Structures. British Journal of Mathematical and Statistical Psychology, 37, 234–251. https://doi.org/10.1111/j.2044-8317.1984.tb00802.x

McDonald, R. P. (1999). Test Theory: A Unified Treatment. L. Erlbaum.

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here. Psychological Methods, 23, 412–433. https://doi.org/10.1037/met0000144

Muñiz, J. (2018). Introducción a la Psicometría. Teoría Clásica y TRI. [Introduction to Psychometrics. Classical Theory and IRT]. Pirámide.

Papageorgiou, C. y Wells, A. (2003). An Empirical Test of a Clinical Metacognitive Model of Rumination and Depression. Cognitive Therapy and Research, 27, 261–273. https://doi.org/10.1023/A:1023962332399

Raykov, T. y Marcoulides, G. A. (2013). Meta-analysis of Scale Reliability Using Latent Variable Modeling. Structural Equation Modeling, 20, Artículo 338353. https://doi.org/10.1080/10705511.2013.769396

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02

Ruiz, M. A., Pardo, A. y San Martín, R. (2010). Modelos de ecuaciones estructurales [Structural Equation Models]. Papeles del Psicólogo, 31, 34–45. https://www.redalyc.org/pdf/778/77812441004.pdf

Scherer, R. y Teo, T. (2020). A Tutorial on the Meta-Analytic Structural Equation Modeling of Reliability Coefficients. Psychological Methods, 25, 747–775. https://doi.org/10.1037/met0000261

Viswesvaran, C. y Ones, D. S. (1995). Theory Testing: Combining Psychometric Meta-Analysis and Structural Equations Modeling. Personnel Psychology, 48, 865–885. https://doi.org/10.1111/j.1744-6570.1995.tb01784.x.

Descargas

Publicado

2025-06-30

Cómo citar

López-López, J. A., Aguayo-Estremera , R., Badenes-Ribera, L., & Fernández-Castilla, B. (2025). Introducción al metaanálisis multivariado con modelos de ecuaciones estructurales. Acción Psicológica, 22(1), 23–40. https://doi.org/10.5944/ap.22.1.43279

Número

Sección

Número especial: Nuevos avances metodológicos en Psicología

Artículos similares

1 2 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.