Study of the impact of sensor position on the stability of an active vibration control with acceleration feedback

Authors

  • Federico R. Masch Facultad de Ingeniería, UNLPam, Argentina
  • Rogelio Hecker CONICET, Argentina

DOI:

https://doi.org/10.5944/ribim.29.2.46364

Keywords:

sensor positions, active vibration control, acceleration feedback

Abstract

This work presents a methodology for active vibration control using proportional acceleration feedback, which considers accelerometer positions as design variables. The methodology employs a discrete modal filter to estimate the acceleration components of the vibration modes. This filter decouples the controller tuning from its dependence on sensor positions, thereby simplifying the design and reducing computational complexity. Accelerometer placement is optimized by minimizing a measure on the modal filter gain matrix (Ω). This criterion aims to reduce the interaction of accelerometer noise with the flexible structure's dynamics and to attenuate observation spillover, a key factor that can cause instability when interacting with unmodeled dynamics. Numerical simulations on a flexible beam demonstrate that this methodology reduces the impact of noise and promotes controller stability.

Downloads

Download data is not yet available.

Author Biographies

Federico R. Masch, Facultad de Ingeniería, UNLPam, Argentina

Facultad de Ingeniería, UNLPam, Argentina

Rogelio Hecker, CONICET, Argentina

Facultad de Ingeniería, UNLPam, Argentina
CONICET, Argentina

References

[1] A. Preumont, Vibration Control of Active Structures: An Introduction. Solid Mechanics and Its Applications 96. Springer Netherlands. ISBN 978-1- 4020-0496-4, 978-0-306-48422-3 (2004)

[2] I.M. da Fonseca, D.A. Rade, L.C. Goes, T. de Paula Sales, “Attitude and vibration control of a satellite con-taining flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actua-tors”. Acta Astronautica, 139, 357-366 (2017)

[3] D. Meng, X. Wang, W. Xu, B. Liang, “Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression” Journal of Sound and Vibration, 396, 30-50 (2017)

[4] T. Sales, D. Rade, L. De Souza, “Passive vibration control of flexible spacecraft using shunted piezoelectric transducers”. Aerospace Science and Technology, 29(1), 403-412 (2013)

[5] M.H. Hansen, “Aeroelastic instability problems for wind turbines”. Wind Energy, 10(6), 551-577 (2007)

[6] F. Caputo, A. De Luca, A. Greco, S. Maietta, M. Bellucci, “FE simulation of a shm system for a large radio-telescope”. International Review on Modelling and Simulations, 11, 5-14 (2018)

[7] J.J. Langenakens, L. Clijmans, H. Ramon, J. De Baerdemaeker, “The effects of vertical sprayer boom movements on the uniformity of spray distribution”. Journal of Agricultural Engineering Research, 74(3), 281-291 (1999)

[8] D. Ooms, F. Lebeau, R. Ruter, M.-F. Destain, “Measurements of the horizontal sprayer boom movements by sensor data fusion”. Computers and Electronics in Agricultu2re, 33(2), 139-162 (2002)

[9] C. Sinfort, “Comparison between measurements and predictions of spray pattern from a moving boom sprayer”. Aspects of Applied Biology (United Kingdom) (1997)

[10] J. Cheer, S.J. Elliott, “Multichannel control systems for the attenuation of interior road noise in vehicles”. Mechanical Systems and Signal Processing, 60, 753-769 (2015)

[11] S. Elliott, “Active noise and vibration control in vehicles”. Vehicle Noise and Vibration Refinement, 235-251. Elsevier (2010)

[12] S. Dyke, B. Spencer Jr, P. Quast, D. Kaspari Jr, M. Sain, “Implementation of an active mass driver using acceleration feedback control”. Computer-Aided Civil and Infrastructure Engineering, 11(5), 305-323 (1996)

[13] J.N. Juang, M. Phan, “Robust controller designs for secondo rder dynamic systems -a virtual passive ap-proach”. Journal of Guidance, Control, and Dynamics, 15(5), 1192-1198 (1992)

[14] S.N. Mahmoodi, M.J. Craft, S.C. Southward, M. Ahmadian, “Active vibration control using optimized mod-ified acceleration feedback with adaptive line enhancer for frequency tracking”. Journal of Sound and Vi-bration, 330(7), 1300-1311 (2011)

[15] M. Balas, “Feedback control of flexible systems”. IEEE Transactions on Automatic Control, 23(4), 673-679, (1978)

[16] D. Halim, S. R. Moheimani. “An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate”. Mechatronics, 13(1), 27-47 (2003)

[17] I. Bruant, L. Proslier, “Optimal location of actuators and sensors in active vibration control”. Journal of intelligent material systems and structures, 16(3), 197-206, (2005)

[18] I. Bruant, L. Gallimard, S. Nikoukar, “Optimal piezoelectric actuator and sensor location for active vibra-tion control, using genetic algorithm”. Journal of Sound and Vibration, 329(10), 1615-1635 (2010)

[19] Ambrosio, F. Resta, F. Ripamonti, “An H2 norm approach for the actuator and sensor placement in vibra-tion control of a smart structure”. Smart Materials and Structures, 21(12), 125016 (2012)

[20] F.R. Masch, R.L. Hecker, “Atenuación de la interacción ruido dinámica vía selección de posiciones de sen-sores en un control activo de vibraciones mediante realimentación de aceleración”. XVI CIBIM, Concep-ción, Chile, (2024)

[21] F.R. Masch, R.L. Hecker, F. Capraro, “Modal filter design reducing the impact of sensors noise on the filter outputs”, Mechanical Systems and Signal Processing, 156, (2021)

[22] A. Preumont, Vibration Control of Active Structures: An Introduction, Solid mechanics and its applications, ISSN 0925-0042 (2002)

Published

2025-10-31

How to Cite

Masch, F. R., & Hecker, R. (2025). Study of the impact of sensor position on the stability of an active vibration control with acceleration feedback. Revista Iberoamericana de Ingeniería Mecánica, 29(2), 63–76. https://doi.org/10.5944/ribim.29.2.46364

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)