Application of Additive Manufacturing Technologies to the Design of Plastic Inserts in Injection Molding Applications

Autores/as

  • Jorge Manuel Mercado-Colmenero
  • Javier Padilla-Castaño
  • Cristina Martín-Doñate

DOI:

https://doi.org/10.5944/ribim.29.2.45409

Palabras clave:

CAD, diseño industrial, impresión 3D, moldeo por inyección, fabricación aditiva

Resumen

La creciente demanda de componentes plásticos complejos en series cortas ha impulsado la evolución de los procesos de fabricación. La fabricación aditiva permite la producción de piezas personalizadas con geometrías complejas y ciclos de vida reducidos, aunque su anisotropía limita la funcionalidad de los componentes plásticos. En este contexto, los nuevos materiales plástico y las revolucionarias tecnologías de prototipado rápido ofrecen una alternativa eficiente, permitiendo la fabricación rápida de moldes para inyección con propiedades comparables a los producidos en serie. Este estudio presenta una evaluación del comportamiento mecánico de moldes fabricados con material plástico PA reforzado con fibra de vidrio, mediante simulaciones numéricas bajo condiciones operativas reales. Los resultados indican una distribución uniforme de tensiones en la cavidad del molde, con valores de 25 MPa y 18 MPa, sin superar el límite elástico del material. Los desplazamientos máximos registrados fueron de 0.095 mm y 0.041 mm, garantizando la integridad estructural de los insertos durante su uso. Estos hallazgos destacan el potencial de los materiales plásticos en la fabricación de moldes para series cortas, proporcionando una solución rentable y eficaz para la producción de componentes poliméricos personalizados y de alta complejidad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] Malloy, R.A., Plastic part design for injection molding: an introduction. Carl Hanser Verlag GmbH Co KG. (2012)

[2] Menges, G., Michaeli, W., Mohren, P., How to make injection molds. Carl Hanser Verlag GmbH Co KG. (2013)

[3] Rosato, D.V., Rosato, M.G., Injection molding handbook. Springer Science & Business Media (2012)

[4] Gim, J., Turng, L.S., “A review of current advancements in high surface quality injection molding: Meas-urement, influencing factors, prediction, and control”. Polymer Testing, 115, 107718. (2022)

[5] Feng, S., Kamat, A.M., Pei, Y., “Design and fabrication of conformal cooling channels in molds: Review and progress updates”. International Journal of Heat and Mass Transfer, 171, 121082 (2021)

[6] Czepiel, M., Bańkosz, M., Sobczak-Kupiec, A., “Advanced injection molding methods”. Materials, 16(17), 5802 (2023)

[7] Arman, S., Lazoglu, I., “A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds”. The International Journal of Advanced Manufacturing Technolo-gy, 127(5), 2035-2106 (2023)

[8] Agrawal, A.R., Pandelidis, I.O., Pecht, M., “Injection‐molding process control—A review”. Polymer Engi-neering & Science, 27(18), 1345-1357 (1987)

[9] Catoen, B., Rees, H., Injection Mold Design Handbook. Hanser, Munich (2021)

[10] Powell, P.C., Housz, A.I., Engineering with polymers. CRC Press (2023)

[11] Gebhardt, A., Kessler, J., Thurn, L., 3DPrinting: Understanding Additive Manufacturing, 2nd edn. Hanser Publishers, Munich (2019)

[12] Narowski, P., Wilczyński, K., “A Global Approach to Modeling Injection Molding”. Polymers, 16(1), 147 (2024)

[13] Fernandes, C., Pontes, A.J., Viana, J.C., Gaspar‐Cunha, A., “Modeling and Optimization of the Injection‐Molding Process: A Review”. Advances in Polymer Technology, 37(2), 429-449 (2018)

[14] Mendible, G.A., Rulander, J.A., Johnston, S.P., “Comparative study of rapid and conventional tooling for plastics injection molding”. Rapid Prototyp. J. 23, 344–352 (2017)

[15] Gim, J., Turng, L.S., “A review of current advancements in high surface quality injection molding: Meas-urement, influencing factors, prediction, and control”. Polymer Testing, 115, 107718 (2022)

[16] Avilez, A.R., Quality Monitoring of Fused Deposition Modeling Additive Manufacturing (Master's thesis, New Mexico State University) (2024)

[17] Pedroso, A.F., Sebbe, N.P., Silva, F.J., Campilho, R.D., Sales-Contini, R.C., Costa, R.D., ... Nogueira, F.R., “A Concise Review on Materials for Injection Moulds and Their Conventional and Non-Conventional Ma-chining Processes”. Machines, 12(4), 255 (2024)

[18] Rooney, K., Dong, Y., Basak, A.K., Pramanik, A., “Prediction of Mechanical Properties of 3D Printed Parti-cle-Reinforced Resin Composites”. Journal of Composites Science, 8(10), 416 (2024)

[19] Junk, S., Schrock, S., Schmieder, N., “Review and development of design guidelines for additive tooling of injection molds using PolyJet modelling”. In International Conference on Additive Manufacturing in Prod-ucts and Applications (pp. 35-45). Cham: Springer International Publishing (2023)

[20] Murugan, R.S., Vinodh, S., “Holistic review on design for additive manufacturing”. Progress in Additive Manufacturing, 1-36 (2024)

[21] Yüceer, Ö.M., Kaynak Öztürk, E., Çiçek, E.S., Aktaş, N., Bankoğlu Güngör, M., “Three-Dimensional-Printed Photopolymer Resin Materials: A Narrative Review on Their Production Techniques and Applica-tions in Dentistry”. Polymers, 17(3), 316 (2025)

[22] Rännar, L.E., Glad, A., Gustafson, C.G., “Efficient cooling with tool inserts manufactured by electron beam melting”. Rapid Prototyping Journal, 13(3), 128-135 (2007)

[23] Feng, S., Kamat, A.M., Pei, Y., “Design and fabrication of conformal cooling channels in molds: Review and progress updates”. International Journal of Heat and Mass Transfer, 171, 121082 (2021)

[24] Beaman, J.J., Bourell, D.L., Seepersad, C.C., Kovar, D., “Additive manufacturing review: early past to cur-rent practice”. Journal of Manufacturing Science and Engineering, 142(11), 110812 (2020)

[25] Shinde, M.S., Ashtankar, K.M., “Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes”. Advances in mechanical engineering, 9(5), 1687814017699764 (2017)

[26] Yin, A.T.M., Rahim, S.Z.A., Al Bakri Abdullah, M.M., Nabialek, M., Abdellah, A.E.H., Rennie, A., ... , Titu, A.M., “Potential of New Sustainable Green Geopolymer Metal Composite (GGMC) Material as Mould In-sert for Rapid Tooling (RT) in Injection Moulding Process”. Materials, 16(4), 1724 (223).

[27] Krizsma, S., Széplaki, P., Suplicz, A., “Coupled injection moulding simulation–thermal and mechanical simulation method to analyse the operational behaviour of additively manufactured polymeric injection moulds”. Results in Engineering, 23, 102558 (2024)

[28] Huzaim, N.H.M., Rahim, S.Z.A., Musa, L., Abdellah, A.H., Abdullah, M.M.A.B., Rennie, A., ... Nabiałek, M., “Potential of Rapid Tooling in Rapid Heat Cycle Molding: A Review”. Materials, 15(10), 3725 (2022)

[29] Bivens, C., Wood, A., Ruble, D., Rangapuram, M., Dasari, S.K., Chandrashekhara, K., DeGrange, J., “Addi-tively manufactured carbon fiber-reinforced thermoplastic composite mold plates for injection molding process”. Applied Composite Materials, 30(5), 1569-1586 (2023)

[30] Krizsma, S., Suplicz, A., “Analysis of the applicability and state monitoring of material extrusion–printed acrylonitrile butadiene styrene injection mould inserts with different infill levels”. Materials Today Com-munications, 35, 106294 (2023)

[31] Storti, B.A., Sobotka, V., “A numerical framework for three-dimensional optimization of cooling channels in thermoplastic printed molds”. Applied Thermal Engineering, 238, 121988 (2024)

[32] Davoudinejad, A., Khosravani, M.R., Pedersen, D.B., Tosello, G., “Influence of thermal ageing on the frac-ture and lifetime of additively manufactured mold inserts”. Engineering Failure Analysis, 115, 104694 (2020)

[33] Bagalkot, A., Pons, D., Symons, D., Clucas, D., “Analysis of raised feature failures on 3D printed injection moulds”. Polymers, 13(10), 1541 (2021)

Descargas

Publicado

2025-10-31

Cómo citar

Mercado-Colmenero, J. M., Padilla-Castaño, J., & Martín-Doñate, C. (2025). Application of Additive Manufacturing Technologies to the Design of Plastic Inserts in Injection Molding Applications. Revista Iberoamericana de Ingeniería Mecánica, 29(2), 3–15. https://doi.org/10.5944/ribim.29.2.45409

Número

Sección

Artículos

Artículos similares

1 2 3 4 5 6 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.