Understanding ChatGPT adoption in universities: the impact of faculty TPACK and UTAUT2

Autores

DOI:

https://doi.org/10.5944/ried.28.1.41498

Palavras-chave:

Artificial Intelligence, TPACK, ChatGPT, UTAUT2 model, instructors

Resumo

The objective of the field of technology known as artificial intelligence (AI) is to create intelligent devices that can perform tasks that have traditionally required human intelligence. ChatGPT is a program based on AI that provide virtual instructors and personalized learning environment for students. It raises the bar for top performers by presenting cutting-edge information and encouraging intellectual development. This study aimed to investigate the significance of instructors' Technological Pedagogy Content Knowledge (TPACK) to determine the intention to use ChatGPT in the light of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. The methodology of the study was a quantitative approach and the data was collected from 569 male and female instructors in Saudi universities. The data was analyzed by Path analysis and Smart PLS. The results of the study showed that Effort Expectancy, Social Influence, Hedonic Motivation, and Information Quality did not have a significant influence on Behavioral Intention. However, Facilitating Condition, Learning Value (negatively), and Privacy Risk have significant effects on Behavioral Intention. Moreover, there was a significant moderating role of Instructors' TPACK on the relationship between Privacy Risk and Behavioral Intention. The results shed a light on the effect of instructors’ TPACK and the lack of the relation among the three knowledge. Instructors’ TPACK should be improved with professional development programs in order to adapt a positive intention of using ChatGPT in Saudi universities. Universities are recommended to facilitate sufficient support and resources for the instructors to emerge new technology in their teaching.

Downloads

Não há dados estatísticos.

Biografias Autor

Abdulaziz Alzahrani, University of Ha'il, UoH (Saudi Arabia)

Full professor in Instructional Technology at University of Ha’il at Kingdom of Saudi Arabia. He is currently teaching in Bachelor and Master programs. His main research interests are in new technology in education, Artificial Intelligence, digital citizenship, social media in education, TPACK Framework, online learning and MOOC.

Amal Alzahrani , University of Ha'il, UoH (Saudi Arabia)

An associate professor of Educational Technology. She is a faculty member in Educational Technology department at College of Education UOH. Her research interests are in Artificial Intelligence, online learning, digital literacy, and educational technology framework.

Referências

Alghatrifi, I., & Khalid, H. (2019). A systematic review of UTAUT and UTAUT2 as a baseline framework of information system research in adopting new technology: a case study of IPV6 adoption. 6th International Conference on Research and Innovation in Information Systems. IEEE. https://doi.org/10.1109/ICRIIS48246.2019.9073292

Al-Safadi, H. A., Shgair, M. S. A., & Al Qatawnih, K. S. (2023). The Effectiveness of Designing E-Learning Environment based on Mastery Learning and Artificial Intelligence on Developing English Speaking Skills among Tenth Graders in Palestine. Journal of Educational & Psychological Studies, 31(1). https://doi.org/10.33976/IUGJEPS.31.1/2023/22

Alshahrani, A. (2023). The impact of ChatGPT on blended learning: Current trends and future research directions. International Journal of Data and Network Science, 7(4), 2029-2040. https://doi.org/10.5267/j.ijdns.2023.6.010

Alzahrani, A. (2014). The Effects of Instructors’ Technological Pedagogical and Content Knowledge (TPACK) on Online Courses. Doctoral Dissertations. Texas Tech University. http://hdl.handle.net/2346/58720

Azizi, S. M., Roozbahani, N., & Khatony, A. (2020). Factors affecting the acceptance of blended learning in medical education: application of UTAUT2 model. BMC Medical Education, 20, 1-9. https://doi.org/10.1186/s12909-020-02302-2

Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32(3), 444-452. https://doi.org/10.1007/s10956-023-10039-y

Dai, Y., Liu, A., & Lim, C. P. (2023). Reconceptualizing ChatGPT and generative AI as a student-driven innovation in higher education. 33rd CIRP Design Conference, Sydney, Australia. 84-90. https://doi.org/10.1016/j.procir.2023.05.002

Dergaa, I., Chamari, K., Zmijewski, P., & Saad, H. B. (2023). From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing. Biology of Sport, 40(2), 615-622. https://doi.org/10.5114/biolsport.2023.125623

Eysenbach, G. (2023). The role of ChatGPT, generative language models, and artificial intelligence in medical education. JMIR Medical Education, 9(1), 1-13. https://doi.org/10.2196/46885

Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N., & Naghmeh-Abbaspour, B. (2023). Determinants of intention to use ChatGPT for educational purposes: Findings from PLS-SEM and fsQCA. International Journal of Human-Computer Interaction, 1-20. https://doi.org/10.1080/10447318.2023.2226495

Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442-458. https://doi.org/10.1108/IMDS-04-2016-0130

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8

Islam, I. e Islam, M. N. (2024). Exploring the opportunities and challenges of ChatGPT in academia. Discover Education, 3(1), 31. https://doi.org/10.1007/s44217-024-00114-w

Järvelä, S., Nguyen, A., & Hadwin, A. (2023). Human and artificial intelligence collaboration for socially shared regulation in learning. British Journal of Educational Technology, 54(5), 1057-1087. https://doi.org/10.1111/bjet.13325

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniak, G., Michaeli, T., Nerdel, C., Pfeffer, J., Paquet, O., Sailer, M., Schmidt, A., Seidel, T., Stadler, M., ..., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103. https://doi.org/10.1016/j.lindif.2023.102274

Kopplin, C. S. (2022). Chatbots in the Workplace: A Technology Acceptance Study Applying Uses and Gratifications in Coworking Spaces. Journal of Organizational Computing and Electronic Commerce, 32(3-4), 232-257. https://doi.org/10.1080/10919392.2023.2215666

Li, S., Liu, Y., & Su, Y. S. (2022). Differential analysis of teachers’ technological pedagogical content knowledge (TPACK) abilities according to teaching stages and educational levels. Sustainability, 14(12), 7176. https://doi.org/10.3390/su14127176

Liu, M., Ren, Y., Nyagoga, L. M., Stonier, F., Wu, Z., & Yu, L. (2023). Future of education in the era of generative artificial intelligence: Consensus among Chinese scholars on applications of ChatGPT in schools. Future in Educational Research. 1(1), 72-101. https://doi.org/10.1002/fer3.10

Luo, J. (2024). A critical review of GenAI policies in higher education assessment: A call to reconsider the “originality” of students’ work. Assessment & Evaluation in Higher Education, 1-14. https://doi.org/10.1080/02602938.2024.2309963

Medeiros, M., Ozturk, A., Hancer, M., Weinland, J., & Okumus, B. (2022). Understanding travel tracking mobile application usage: An integration of self determination theory and UTAUT2. Tourism Management Perspectives, 42. https://doi.org/10.1016/j.tmp.2022.100949

Menon, D., & Shilpa, K. (2023). “Chatting with ChatGPT”: Analyzing the factors influencing users' intention to Use the Open AI's ChatGPT using the UTAUT model. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e20962

Mohammad-Salehi, B., Vaez-Dalili, M., & Heidari Tabrizi, H. (2021). Investigating Factors That Influence EFL Teachers' Adoption of Web 2.0 Technologies: Evidence from Applying the UTAUT and TPACK. TESL-EJ, 25(1). https://tesl-ej.org/pdf/ej97/a21.pdf

Ning, Y., Zhang, C., Xu, B., Zhou, Y., & Wijaya, T. T. (2024). Teachers’ AI-TPACK: Exploring the relationship between knowledge elements. Sustainability, 16(3), 978. https://doi.org/10.3390/su16030978

Nookhao, S., & Kiattisin, S. (2023). Achieving a successful e-government: Determinants of behavioral intention from Thai citizens’ perspective. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18944

Pavlik, J. V. (2023). Collaborating with ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education. Journalism & Mass Communication Educator, 78(1), 84-93. https://doi.org/10.1177/10776958221149577

Perera, P., & Lankathilaka, M. (2023). Preparing to Revolutionize Education with the Multi-Model GenAI Tool Google Gemini? A Journey towards Effective Policy Making. Journal of Advances in Education and Philosophy, 7(8), 246-253. https://doi.org/10.36348/jaep.2023.v07i08.001

Qin, F., Li, K., & Yan, J. (2020). Understanding user trust in artificial intelligence‐based educational systems: Evidence from China. British Journal of Educational Technology, 51(5), 1693-1710. https://doi.org/10.1111/bjet.12994

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35. https://doi.org/10.1016/j.compedu.2018.09.009

Sharples, M. (2023). Towards social generative AI for education: theory, practices and ethics. Learning: Research and Practice, 9(2), 159-167. https://doi.org/10.1080/23735082.2023.2261131

Sidiropoulos, D., & Anagnostopoulos, C. N. (2024). Applications, challenges and ethical issues of AI and ChatGPT in education. arXiv preprint arXiv:2402.07907. https://doi.org/10.48550/arXiv.2402.07907

Smith, A., Hachen, S., Schleifer, R., Bhugra, D., Buadze, A., & Liebrenz, M. (2023). Old dog, new tricks? Exploring the potential functionalities of ChatGPT in supporting educational methods in social psychiatry. International Journal of Social Psychiatry, 69(8), 1882-1889. https://doi.org/10.1177/00207640231178451

Yilmaz, R., & Yilmaz, F. G. K. (2023). Augmented intelligence in programming learning: Examining student views on the use of ChatGPT for programming learning. Computers in Human Behavior: Artificial Humans, 1(2). https://doi.org/10.1016/j.chbah.2023.100005

Publicado

2025-01-02

Como Citar

Alzahrani, A., & Alzahrani , A. (2025). Understanding ChatGPT adoption in universities: the impact of faculty TPACK and UTAUT2. RIED-Revista Iberoamericana de Educación a Distancia, 28(1), 37–58. https://doi.org/10.5944/ried.28.1.41498

Artigos Similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.