Digital Cognitive Maps for Scientific Knowledge Construction in Initial Teacher Education

Authors

DOI:

https://doi.org/10.5944/ried.26.2.36067

Keywords:

educational technology, visual learning, transfer of learning, teacher education

Abstract

Interactive technology offers new opportunities to design dialogic learning spaces and scaffolds with the aid of visual icons. These technological environments can support the construction of open-ended visual cognitive digital maps, which portray an external representation of scientific knowledge that could foster the meaningful resolution of socio-scientific challenges. In this context, this research aims to study the impact of digital cognitive maps on: a) meaningful learning of scientific concepts and b) complex representation of scientific concepts in teacher education. A case study with multi-method analysis was designed. The cognitive maps of 47 teacher education students are analysed, both quantitatively and qualitatively, and before-after their participation in an educational experience that enhances the collaborative construction of digital cognitive maps in order to solve a socio-scientific challenge. The results show that the overall educational experience and, specifically, the scientific inquiry visual scaffolds embedded into the technological environment have a positive impact on learning scientific knowledge and inquiry skills. Furthermore, outcomes also indicate that the experience enriches the students’ representation strategies of complex scientific knowledge and that the construction of cognitive maps with a network architecture increases after the educational experience. Finally, educational implications on the use of interactive technology and cognitive maps for promoting significant learning of content knowledge in pre-service teachers are discussed.

FULL ARTICLE:
https://revistas.uned.es/index.php/ried/article/view/36067/27632

Downloads

Download data is not yet available.

Author Biographies

Alba Guiral Herrera, Generalitat de Catalunya (Spain)

Doctora por la Universidad de Lleida (España), ha sido profesora asociada de Didáctica de las Ciencias Experimentales en la misma Universidad y es docente de secundaria del Departamento de Educación de la Generalitat de Catalunya, especialidad de Biología y Geología. Miembro del grupo de investigación Cognición y Contexto y las Tecnologías de la Información y la Comunicación (CONTIC, www.contic.udl.cat) de la Universidad de Lleida y reconocido como grupo consolidado por la Generalitat de Catalunya. Actualmente sus líneas de investigación son el aprendizaje de las ciencias por indagación con el uso de herramientas visuales de mediación y organización cognitiva que permiten el aprendizaje dialógico.

Manoli Pifarré Turmo, Universitat de Lleida, UDL (Spain)

Profesora de Psicología de la Educación en la Universidad de Lleida (España). Lidera el grupo de investigación “Cognición y Contexto y las Tecnologías de la Información y la Comunicación” (CONTIC) - www.contic.udl.cat; grupo reconocido por la Generalitat de Cataluña. Ha dirigido numerosos proyectos de investigación de ámbito nacional e internacional sobre el impacto de la tecnología en el desarrollo de procesos clave para el aprendizaje. Su línea de investigación se centra en el uso dialógico de la tecnología para promover procesos cognitivos y sociales y para potenciar procesos de creatividad colaborativa. Actualmente, trabaja en el diseño, implementación y evaluación del prototipo tecnológico Cocrea.

References

Bayram‐Jacobs, D., Henze, I., Evagorou, M., Shwartz, Y., Aschim, E. L., Alcaraz‐Dominguez, S., Barajas, M., & Dagan, E. (2019). Science teachers' pedagogical content knowledge development during enactment of socioscientific curriculum materials. Journal of Research in Science Teaching, 56(9), 1207-1233. https://doi.org/10.1002/tea.21550

Brugha, M. E., & Hennessy, S. (2022). Educators as creators: lessons from a mechanical MOOC on educational dialogue for local facilitators. Irish Educational Studies, 41(1), 225-243. https://doi.org/10.1080/03323315.2021.2022527

Cañas, A. J., Novak, J. D., & Reiska, P. (2015). How good is my concept map? Am I a good Cmapper? Knowledge Management & E-Learning, 7(1), 6. https://doi.org/10.34105/j.kmel.2015.07.002

Chai, C. S. (2019). Teacher professional development for science, technology, engineering and mathematics (STEM) education: A review from the perspectives of technological pedagogical content (TPACK). The Asia-Pacific Education Researcher, 28(1), 5-13. https://doi.org/10.1007/s40299-018-0400-7

Chen, J., Wang, M., Dede, C., & Grotzer, T. A. (2021). Analyzing student thinking reflected in self-constructed cognitive maps and its influence on inquiry task performance. Instructional Science, 49(3), 287-312. https://doi.org/10.1007/s11251-021-09543-8

de Ries, K. E., Schaap, H., van Loon, A. M. M., Kral, M. M., & Meijer, P. C. (2021). A literature review of open-ended concept maps as a research instrument to study knowledge and learning. Quality & Quantity, 1-35. https://doi.org/10.1007/s11135-021-01113-x

Derman, A., & Ebenezer, J. (2020). The effect of multiple representations of physical and chemical changes on the development of primary pre-service teachers’ cognitive structures. Research in Science Education, 50, 1575-1601. https://doi.org/10.1007/s11165-018-9744-5

Derman, A., & Eilks, I. (2016). Using a word association test for the assessment of high school students' cognitive structures on dissolution. Chemistry Education Research and Practice, 17(4), 902-913. https://doi.org/10.1039/C6RP00084C

Hakkarainen, K. A. I. (2003). Emergence of progressive-inquiry culture in computer-supported collaborative learning. Learning Environments Research, 6(2), 199-220. https://doi.org/10.1023/A:1024995120180

Hennessy, S. (2011). The role of digital artefacts on the interactive whiteboard in supporting classroom dialogue. Journal of computer assisted learning, 27(6), 463-489. https://doi.org/10.1111/j.1365-2729.2011.00416.x

Huang, B., Jong, M. S. Y., Tu, Y. F., Hwang, G. J., Chai, C. S., & Jiang, M. Y. C. (2022). Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Computers & Education, 104577. https://doi.org/10.3390/educsci13010001

Isohätälä, J., Näykki, P., Järvelä, S., Baker, M. J., & Lund, K. (2021). Social sensitivity: a manifesto for CSCL research. International Journal of Computer-Supported Collaborative Learning, 16(2),1-11. https://doi.org/10.1007/s11412-021-09344-8

Kamarudin, M. Z., Mat Noor, M. S. A., & Omar, R. (2022). A scoping review of the effects of a technology-integrated, inquiry-based approach on primary pupils’ learning in science. Research in Science & Technological Education, 1-20. https://doi.org/10.1080/02635143.2022.2138847

Kinchin, I. M., Hay, D. B., & Adams, A. (2000). How a qualitative approach to concept map analysis can be used to scaffold learning by illustrating patterns of conceptual development. Educational research, 42(1), 43-57. https://doi.org/10.1080/001318800363908

Kind, V., & Chan, K. K. (2019). Resolving the amalgam: connecting pedagogical content knowledge, content knowledge and pedagogical knowledge. International Journal of Science Education, 41(7), 964-978. https://doi.org/10.1080/09500693.2019.1584931

Krieglstein, F., Schneider, S., Beege, M., & Rey, G. D. (2022). How the design and complexity of concept maps influence cognitive learning processes. Educational technology research and development, 70(1), 99-118. https://doi.org/10.1007/s11423-022-10083-2

Ley, T. (2020). Knowledge structures for integrating working and learning: A reflection on a decade of learning technology research for workplace learning. British Journal of Educational Technology, 51(2), 331-346. https://doi.org/10.1111/bjet.12835

Lin, X., Yang, W., Wu, L., Zhu, L., Wu, D., & Li, H. (2021). Using an inquiry-based science and engineering program to promote science knowledge, problem-solving skills and approaches to learning in preschool children. Early Education and Development, 32(5), 695-713. https://doi.org/10.1080/10409289.2020.1795333

Major, L., Warwick, P., Rasmussen, I., Ludvigsen, S., & Cook, V. (2018). Classroom dialogue and digital technologies: A scoping review. Education and Information Technologies, 23(5), 1995-2028. https://doi.org/10.1007/s10639-018-9701-y

Mercer, N., Hennessy, S., & Warwick, P. (2019). Dialogue, thinking together and digital technology in the classroom: Some educational implications of a continuing line of inquiry. International Journal of Educational Research, 97, 187-199. https://doi.org/10.1016/j.ijer.2017.08.007

Murphy, C., Smith, G., & Broderick, N. (2021). A starting point: Provide children opportunities to engage with scientific inquiry and nature of science. Research in Science Education, 51(6), 1759-1793. https://doi.org/10.1007/s11165-019-9825-0

Pifarré, M., Wegerif, R., Guiral, A., & del Barrio, M. (2014). Developing Technological and Pedagogical Affordances to Support the Collaborative Process of Inquiry-Based Science Education. In Digital Systems for Open Access to Formal and Informal Learning (pp. 159-179). Springer, Cham. https://doi.org/10.1007/978-3-319-02264-2_11

Pitjeng-Mosabala, P., & Rollnick, M. (2018). Exploring the development of novice unqualified graduate teachers’ topic-specific PCK in teaching the particulate nature of matter in South Africa’s classrooms. International Journal of Science Education, 40(7), 742-770. https://doi.org/10.1080/09500693.2018.1446569

Romine, W. L., Sadler, T. D., & Kinslow, A. T. (2017). Assessment of scientific literacy: Development and validation of the Quantitative Assessment of Socio‐Scientific Reasoning (QuASSR). Journal of Research in Science Teaching, 54(2), 274-295. https://doi.org/10.1002/tea.21368

Schneider, S., Krieglstein, F., Beege, M., & Rey, G. D. (2021). How organization highlighting through signaling, spatial contiguity and segmenting can influence learning with concept maps. Computers and Education Open, 2, 100040. https://doi.org/10.1016/j.caeo.2021.100040

Scott, P., Mortimer, E., & Ametller, J. (2011). Pedagogical link‐making: a fundamental aspect of teaching and learning scientific conceptual knowledge. Studies in Science Education, 47(1), 3-36. https://doi.org/10.1080/03057267.2011.549619

Şen, M., Demirdöğen, B., & Öztekin, C. (2022). Interactions among topic-specific pedagogical content knowledge components for science teachers: The impact of content knowledge. Journal of Science Teacher Education, 33(8), 860-887. https://doi.org/10.1080/1046560X.2021.2012630

Sun, M., Wang, M., Wegerif, R., & Peng, J. (2022). How do students generate ideas together in scientific creativity tasks through computer-based mind mapping? Computers & Education, 176, 104359. https://doi.org/10.1016/j.compedu.2021.104359

Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103-1127. https://doi.org/10.1016/j.compedu.2006.10.007

Wang, M., & Wegerif, R. (2019). From active‐in‐behaviour to active‐in‐thinking in learning with technology. British Journal of Educational Technology, 50, 2178–2180. https://doi.org/10.1111/bjet.12874

Wang, M., Kirschner, P. A., & Bridges, S. M. (2016). Computer-based learning environments for deep learning in inquiry and problem-solving contexts. In Proceedings of the 12th International Conference of the Learning Sciences (ICLS). https://doi.org/10.1016/j.chb.2018.06.026

Wang, M., Derry, S., & Ge, X. (2017). Guest editorial: Fostering deep learning in problem-solving contexts with the support of technology. Journal of Educational Technology & Society, 20(4), 162-165. https://www.jstor.org/stable/26229214?seq=1&cid=pdf

Wang, M., Wu, B., Kirschner, P. A., & Spector, J. M. (2018). Using cognitive mapping to foster deeper learning with complex problems in a computer-based environment. Computers in Human Behavior, 87, 450-458. https://doi.org/10.1016/j.chb.2018.01.024

Wegerif, R., & Yang, Y. (2011). Technology and dialogic space: lessons from history and from the ‘Argunaut’ and ‘Metafora’ projects. In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting Computer-Supported Collaborative Learning to Policy and Practice: CSCL2011 Conference Proceedings. Volume I — Long Papers (pp. 312-318). International Society of the Learning Sciences.

Wegerif, R., Kershner, R., Hennessy, S., & Ahmed, A. (2020). Foundation for research on educational dialogue. In Research methods for educational dialogue (pp. 9-26). Bloomsbury. https://doi.org/10.5040/9781350060111

Wu, H. L., Weng, H. L., & She, H. C. (2016). Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry. International Journal of Contemporary Educational Research, 3(1), 12-24.

Yang, Y. (2022). The Causal Map: Enhancing Creativity by Supporting the Construction of Alternate Problem Representations. Doctoral dissertation. Columbia University. https://doi.org/10.7916/wm21-0n80

Zura, M. P. V., Velasco, S. V. Y., Martínez, T. T. C., & Arboleda, J. I. C. (2022). Análisis del proceso de aprendizaje y comprensión. Caso de estudio principio de proporcionalidad. Revista Conrado, 18(S1), 128-138.

Published

2023-04-01

How to Cite

Guiral Herrera, A., & Pifarré Turmo, M. (2023). Digital Cognitive Maps for Scientific Knowledge Construction in Initial Teacher Education: . RIED. Revista Iberoamericana de Educación a Distancia, 26(2), 89–109. https://doi.org/10.5944/ried.26.2.36067