Los mapas cognitivos digitales para la construcción de conocimiento científico en la formación inicial del profesorado

Autores/as

DOI:

https://doi.org/10.5944/ried.26.2.36067

Palabras clave:

tecnología para la educación, aprendizaje visual, transferencia del aprendizaje, formación del profesorado

Resumen

La tecnología interactiva ofrece nuevas oportunidades para el diseño de espacios de aprendizaje dialógico y ayudas al aprendizaje con el uso de iconos visuales. Estos entornos virtuales pueden facilitar la construcción de mapas cognitivos visuales abiertos, que posibilitan la representación externa del conocimiento científico y a su vez pueden favorecer la resolución significativa de retos socio-científicos. En este contexto, en la presente investigación se pretende estudiar el impacto de los mapas cognitivos sobre: a) el aprendizaje significativo de conceptos científicos y b) la representación compleja de conceptos científicos en la formación del profesorado. Se ha diseñado un caso de estudio con análisis multimétodo. Se analizan 47 mapas cognitivos de estudiantes de educación, ambos cuantitativa y cualitativamente, y antes y después de su participación en una experiencia educativa que promueve la construcción colaborativa de mapas cognitivos digitales para resolver un reto socio-científico. Los resultados muestran que la experiencia educativa globalmente y, concretamente, las ayudas visuales al aprendizaje de las ciencias por indagación incluidas en el entorno tecnológico tienen un impacto positivo en el aprendizaje de conocimientos científicos y habilidades de indagación. Además, los resultados también indican que la experiencia enriquece las estrategias de representación del alumnado con respecto al conocimiento científico complejo y la construcción de mapas cognitivos con arquitectura de red incrementa después de participar en la experiencia educativa. Finalmente, se discuten las implicaciones educativas sobre el uso de la tecnología interactiva y los mapas cognitivos para promover el aprendizaje significativo de contenidos científicos en la formación inicial de profesorado.

ARTÍCULO COMPLETO:
https://revistas.uned.es/index.php/ried/article/view/36067/27632

Descargas

Biografía del autor/a

Alba Guiral Herrera, Generalitat de Catalunya (España)

Doctora por la Universidad de Lleida (España), ha sido profesora asociada de Didáctica de las Ciencias Experimentales en la misma Universidad y es docente de secundaria del Departamento de Educación de la Generalitat de Catalunya, especialidad de Biología y Geología. Miembro del grupo de investigación Cognición y Contexto y las Tecnologías de la Información y la Comunicación (CONTIC, www.contic.udl.cat) de la Universidad de Lleida y reconocido como grupo consolidado por la Generalitat de Catalunya. Actualmente sus líneas de investigación son el aprendizaje de las ciencias por indagación con el uso de herramientas visuales de mediación y organización cognitiva que permiten el aprendizaje dialógico.

Manoli Pifarré Turmo, Universitat de Lleida, UDL (España)

Profesora de Psicología de la Educación en la Universidad de Lleida (España). Lidera el grupo de investigación “Cognición y Contexto y las Tecnologías de la Información y la Comunicación” (CONTIC) - www.contic.udl.cat; grupo reconocido por la Generalitat de Cataluña. Ha dirigido numerosos proyectos de investigación de ámbito nacional e internacional sobre el impacto de la tecnología en el desarrollo de procesos clave para el aprendizaje. Su línea de investigación se centra en el uso dialógico de la tecnología para promover procesos cognitivos y sociales y para potenciar procesos de creatividad colaborativa. Actualmente, trabaja en el diseño, implementación y evaluación del prototipo tecnológico Cocrea.

Citas

Bayram‐Jacobs, D., Henze, I., Evagorou, M., Shwartz, Y., Aschim, E. L., Alcaraz‐Dominguez, S., Barajas, M., & Dagan, E. (2019). Science teachers' pedagogical content knowledge development during enactment of socioscientific curriculum materials. Journal of Research in Science Teaching, 56(9), 1207-1233. https://doi.org/10.1002/tea.21550

Brugha, M. E., & Hennessy, S. (2022). Educators as creators: lessons from a mechanical MOOC on educational dialogue for local facilitators. Irish Educational Studies, 41(1), 225-243. https://doi.org/10.1080/03323315.2021.2022527

Cañas, A. J., Novak, J. D., & Reiska, P. (2015). How good is my concept map? Am I a good Cmapper? Knowledge Management & E-Learning, 7(1), 6. https://doi.org/10.34105/j.kmel.2015.07.002

Chai, C. S. (2019). Teacher professional development for science, technology, engineering and mathematics (STEM) education: A review from the perspectives of technological pedagogical content (TPACK). The Asia-Pacific Education Researcher, 28(1), 5-13. https://doi.org/10.1007/s40299-018-0400-7

Chen, J., Wang, M., Dede, C., & Grotzer, T. A. (2021). Analyzing student thinking reflected in self-constructed cognitive maps and its influence on inquiry task performance. Instructional Science, 49(3), 287-312. https://doi.org/10.1007/s11251-021-09543-8

de Ries, K. E., Schaap, H., van Loon, A. M. M., Kral, M. M., & Meijer, P. C. (2021). A literature review of open-ended concept maps as a research instrument to study knowledge and learning. Quality & Quantity, 1-35. https://doi.org/10.1007/s11135-021-01113-x

Derman, A., & Ebenezer, J. (2020). The effect of multiple representations of physical and chemical changes on the development of primary pre-service teachers’ cognitive structures. Research in Science Education, 50, 1575-1601. https://doi.org/10.1007/s11165-018-9744-5

Derman, A., & Eilks, I. (2016). Using a word association test for the assessment of high school students' cognitive structures on dissolution. Chemistry Education Research and Practice, 17(4), 902-913. https://doi.org/10.1039/C6RP00084C

Hakkarainen, K. A. I. (2003). Emergence of progressive-inquiry culture in computer-supported collaborative learning. Learning Environments Research, 6(2), 199-220. https://doi.org/10.1023/A:1024995120180

Hennessy, S. (2011). The role of digital artefacts on the interactive whiteboard in supporting classroom dialogue. Journal of computer assisted learning, 27(6), 463-489. https://doi.org/10.1111/j.1365-2729.2011.00416.x

Huang, B., Jong, M. S. Y., Tu, Y. F., Hwang, G. J., Chai, C. S., & Jiang, M. Y. C. (2022). Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Computers & Education, 104577. https://doi.org/10.3390/educsci13010001

Isohätälä, J., Näykki, P., Järvelä, S., Baker, M. J., & Lund, K. (2021). Social sensitivity: a manifesto for CSCL research. International Journal of Computer-Supported Collaborative Learning, 16(2),1-11. https://doi.org/10.1007/s11412-021-09344-8

Kamarudin, M. Z., Mat Noor, M. S. A., & Omar, R. (2022). A scoping review of the effects of a technology-integrated, inquiry-based approach on primary pupils’ learning in science. Research in Science & Technological Education, 1-20. https://doi.org/10.1080/02635143.2022.2138847

Kinchin, I. M., Hay, D. B., & Adams, A. (2000). How a qualitative approach to concept map analysis can be used to scaffold learning by illustrating patterns of conceptual development. Educational research, 42(1), 43-57. https://doi.org/10.1080/001318800363908

Kind, V., & Chan, K. K. (2019). Resolving the amalgam: connecting pedagogical content knowledge, content knowledge and pedagogical knowledge. International Journal of Science Education, 41(7), 964-978. https://doi.org/10.1080/09500693.2019.1584931

Krieglstein, F., Schneider, S., Beege, M., & Rey, G. D. (2022). How the design and complexity of concept maps influence cognitive learning processes. Educational technology research and development, 70(1), 99-118. https://doi.org/10.1007/s11423-022-10083-2

Ley, T. (2020). Knowledge structures for integrating working and learning: A reflection on a decade of learning technology research for workplace learning. British Journal of Educational Technology, 51(2), 331-346. https://doi.org/10.1111/bjet.12835

Lin, X., Yang, W., Wu, L., Zhu, L., Wu, D., & Li, H. (2021). Using an inquiry-based science and engineering program to promote science knowledge, problem-solving skills and approaches to learning in preschool children. Early Education and Development, 32(5), 695-713. https://doi.org/10.1080/10409289.2020.1795333

Major, L., Warwick, P., Rasmussen, I., Ludvigsen, S., & Cook, V. (2018). Classroom dialogue and digital technologies: A scoping review. Education and Information Technologies, 23(5), 1995-2028. https://doi.org/10.1007/s10639-018-9701-y

Mercer, N., Hennessy, S., & Warwick, P. (2019). Dialogue, thinking together and digital technology in the classroom: Some educational implications of a continuing line of inquiry. International Journal of Educational Research, 97, 187-199. https://doi.org/10.1016/j.ijer.2017.08.007

Murphy, C., Smith, G., & Broderick, N. (2021). A starting point: Provide children opportunities to engage with scientific inquiry and nature of science. Research in Science Education, 51(6), 1759-1793. https://doi.org/10.1007/s11165-019-9825-0

Pifarré, M., Wegerif, R., Guiral, A., & del Barrio, M. (2014). Developing Technological and Pedagogical Affordances to Support the Collaborative Process of Inquiry-Based Science Education. In Digital Systems for Open Access to Formal and Informal Learning (pp. 159-179). Springer, Cham. https://doi.org/10.1007/978-3-319-02264-2_11

Pitjeng-Mosabala, P., & Rollnick, M. (2018). Exploring the development of novice unqualified graduate teachers’ topic-specific PCK in teaching the particulate nature of matter in South Africa’s classrooms. International Journal of Science Education, 40(7), 742-770. https://doi.org/10.1080/09500693.2018.1446569

Romine, W. L., Sadler, T. D., & Kinslow, A. T. (2017). Assessment of scientific literacy: Development and validation of the Quantitative Assessment of Socio‐Scientific Reasoning (QuASSR). Journal of Research in Science Teaching, 54(2), 274-295. https://doi.org/10.1002/tea.21368

Schneider, S., Krieglstein, F., Beege, M., & Rey, G. D. (2021). How organization highlighting through signaling, spatial contiguity and segmenting can influence learning with concept maps. Computers and Education Open, 2, 100040. https://doi.org/10.1016/j.caeo.2021.100040

Scott, P., Mortimer, E., & Ametller, J. (2011). Pedagogical link‐making: a fundamental aspect of teaching and learning scientific conceptual knowledge. Studies in Science Education, 47(1), 3-36. https://doi.org/10.1080/03057267.2011.549619

Şen, M., Demirdöğen, B., & Öztekin, C. (2022). Interactions among topic-specific pedagogical content knowledge components for science teachers: The impact of content knowledge. Journal of Science Teacher Education, 33(8), 860-887. https://doi.org/10.1080/1046560X.2021.2012630

Sun, M., Wang, M., Wegerif, R., & Peng, J. (2022). How do students generate ideas together in scientific creativity tasks through computer-based mind mapping? Computers & Education, 176, 104359. https://doi.org/10.1016/j.compedu.2021.104359

Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103-1127. https://doi.org/10.1016/j.compedu.2006.10.007

Wang, M., & Wegerif, R. (2019). From active‐in‐behaviour to active‐in‐thinking in learning with technology. British Journal of Educational Technology, 50, 2178–2180. https://doi.org/10.1111/bjet.12874

Wang, M., Kirschner, P. A., & Bridges, S. M. (2016). Computer-based learning environments for deep learning in inquiry and problem-solving contexts. In Proceedings of the 12th International Conference of the Learning Sciences (ICLS). https://doi.org/10.1016/j.chb.2018.06.026

Wang, M., Derry, S., & Ge, X. (2017). Guest editorial: Fostering deep learning in problem-solving contexts with the support of technology. Journal of Educational Technology & Society, 20(4), 162-165. https://www.jstor.org/stable/26229214?seq=1&cid=pdf

Wang, M., Wu, B., Kirschner, P. A., & Spector, J. M. (2018). Using cognitive mapping to foster deeper learning with complex problems in a computer-based environment. Computers in Human Behavior, 87, 450-458. https://doi.org/10.1016/j.chb.2018.01.024

Wegerif, R., & Yang, Y. (2011). Technology and dialogic space: lessons from history and from the ‘Argunaut’ and ‘Metafora’ projects. In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting Computer-Supported Collaborative Learning to Policy and Practice: CSCL2011 Conference Proceedings. Volume I — Long Papers (pp. 312-318). International Society of the Learning Sciences.

Wegerif, R., Kershner, R., Hennessy, S., & Ahmed, A. (2020). Foundation for research on educational dialogue. In Research methods for educational dialogue (pp. 9-26). Bloomsbury. https://doi.org/10.5040/9781350060111

Wu, H. L., Weng, H. L., & She, H. C. (2016). Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry. International Journal of Contemporary Educational Research, 3(1), 12-24.

Yang, Y. (2022). The Causal Map: Enhancing Creativity by Supporting the Construction of Alternate Problem Representations. Doctoral dissertation. Columbia University. https://doi.org/10.7916/wm21-0n80

Zura, M. P. V., Velasco, S. V. Y., Martínez, T. T. C., & Arboleda, J. I. C. (2022). Análisis del proceso de aprendizaje y comprensión. Caso de estudio principio de proporcionalidad. Revista Conrado, 18(S1), 128-138.

Publicado

2023-04-01

Cómo citar

Guiral Herrera, A., & Pifarré Turmo, M. (2023). Los mapas cognitivos digitales para la construcción de conocimiento científico en la formación inicial del profesorado: . RIED-Revista Iberoamericana De Educación a Distancia, 26(2), 89–109. https://doi.org/10.5944/ried.26.2.36067

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.