Los mapas cognitivos digitales para la construcción de conocimiento científico en la formación inicial del profesorado
DOI:
https://doi.org/10.5944/ried.26.2.36067Palabras clave:
tecnología para la educación, aprendizaje visual, transferencia del aprendizaje, formación del profesoradoResumen
La tecnología interactiva ofrece nuevas oportunidades para el diseño de espacios de aprendizaje dialógico y ayudas al aprendizaje con el uso de iconos visuales. Estos entornos virtuales pueden facilitar la construcción de mapas cognitivos visuales abiertos, que posibilitan la representación externa del conocimiento científico y a su vez pueden favorecer la resolución significativa de retos socio-científicos. En este contexto, en la presente investigación se pretende estudiar el impacto de los mapas cognitivos sobre: a) el aprendizaje significativo de conceptos científicos y b) la representación compleja de conceptos científicos en la formación del profesorado. Se ha diseñado un caso de estudio con análisis multimétodo. Se analizan 47 mapas cognitivos de estudiantes de educación, ambos cuantitativa y cualitativamente, y antes y después de su participación en una experiencia educativa que promueve la construcción colaborativa de mapas cognitivos digitales para resolver un reto socio-científico. Los resultados muestran que la experiencia educativa globalmente y, concretamente, las ayudas visuales al aprendizaje de las ciencias por indagación incluidas en el entorno tecnológico tienen un impacto positivo en el aprendizaje de conocimientos científicos y habilidades de indagación. Además, los resultados también indican que la experiencia enriquece las estrategias de representación del alumnado con respecto al conocimiento científico complejo y la construcción de mapas cognitivos con arquitectura de red incrementa después de participar en la experiencia educativa. Finalmente, se discuten las implicaciones educativas sobre el uso de la tecnología interactiva y los mapas cognitivos para promover el aprendizaje significativo de contenidos científicos en la formación inicial de profesorado.
ARTÍCULO COMPLETO:
https://revistas.uned.es/index.php/ried/article/view/36067/27632
Descargas
Citas
Bayram‐Jacobs, D., Henze, I., Evagorou, M., Shwartz, Y., Aschim, E. L., Alcaraz‐Dominguez, S., Barajas, M., & Dagan, E. (2019). Science teachers' pedagogical content knowledge development during enactment of socioscientific curriculum materials. Journal of Research in Science Teaching, 56(9), 1207-1233. https://doi.org/10.1002/tea.21550
Brugha, M. E., & Hennessy, S. (2022). Educators as creators: lessons from a mechanical MOOC on educational dialogue for local facilitators. Irish Educational Studies, 41(1), 225-243. https://doi.org/10.1080/03323315.2021.2022527
Cañas, A. J., Novak, J. D., & Reiska, P. (2015). How good is my concept map? Am I a good Cmapper? Knowledge Management & E-Learning, 7(1), 6. https://doi.org/10.34105/j.kmel.2015.07.002
Chai, C. S. (2019). Teacher professional development for science, technology, engineering and mathematics (STEM) education: A review from the perspectives of technological pedagogical content (TPACK). The Asia-Pacific Education Researcher, 28(1), 5-13. https://doi.org/10.1007/s40299-018-0400-7
Chen, J., Wang, M., Dede, C., & Grotzer, T. A. (2021). Analyzing student thinking reflected in self-constructed cognitive maps and its influence on inquiry task performance. Instructional Science, 49(3), 287-312. https://doi.org/10.1007/s11251-021-09543-8
de Ries, K. E., Schaap, H., van Loon, A. M. M., Kral, M. M., & Meijer, P. C. (2021). A literature review of open-ended concept maps as a research instrument to study knowledge and learning. Quality & Quantity, 1-35. https://doi.org/10.1007/s11135-021-01113-x
Derman, A., & Ebenezer, J. (2020). The effect of multiple representations of physical and chemical changes on the development of primary pre-service teachers’ cognitive structures. Research in Science Education, 50, 1575-1601. https://doi.org/10.1007/s11165-018-9744-5
Derman, A., & Eilks, I. (2016). Using a word association test for the assessment of high school students' cognitive structures on dissolution. Chemistry Education Research and Practice, 17(4), 902-913. https://doi.org/10.1039/C6RP00084C
Hakkarainen, K. A. I. (2003). Emergence of progressive-inquiry culture in computer-supported collaborative learning. Learning Environments Research, 6(2), 199-220. https://doi.org/10.1023/A:1024995120180
Hennessy, S. (2011). The role of digital artefacts on the interactive whiteboard in supporting classroom dialogue. Journal of computer assisted learning, 27(6), 463-489. https://doi.org/10.1111/j.1365-2729.2011.00416.x
Huang, B., Jong, M. S. Y., Tu, Y. F., Hwang, G. J., Chai, C. S., & Jiang, M. Y. C. (2022). Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Computers & Education, 104577. https://doi.org/10.3390/educsci13010001
Isohätälä, J., Näykki, P., Järvelä, S., Baker, M. J., & Lund, K. (2021). Social sensitivity: a manifesto for CSCL research. International Journal of Computer-Supported Collaborative Learning, 16(2),1-11. https://doi.org/10.1007/s11412-021-09344-8
Kamarudin, M. Z., Mat Noor, M. S. A., & Omar, R. (2022). A scoping review of the effects of a technology-integrated, inquiry-based approach on primary pupils’ learning in science. Research in Science & Technological Education, 1-20. https://doi.org/10.1080/02635143.2022.2138847
Kinchin, I. M., Hay, D. B., & Adams, A. (2000). How a qualitative approach to concept map analysis can be used to scaffold learning by illustrating patterns of conceptual development. Educational research, 42(1), 43-57. https://doi.org/10.1080/001318800363908
Kind, V., & Chan, K. K. (2019). Resolving the amalgam: connecting pedagogical content knowledge, content knowledge and pedagogical knowledge. International Journal of Science Education, 41(7), 964-978. https://doi.org/10.1080/09500693.2019.1584931
Krieglstein, F., Schneider, S., Beege, M., & Rey, G. D. (2022). How the design and complexity of concept maps influence cognitive learning processes. Educational technology research and development, 70(1), 99-118. https://doi.org/10.1007/s11423-022-10083-2
Ley, T. (2020). Knowledge structures for integrating working and learning: A reflection on a decade of learning technology research for workplace learning. British Journal of Educational Technology, 51(2), 331-346. https://doi.org/10.1111/bjet.12835
Lin, X., Yang, W., Wu, L., Zhu, L., Wu, D., & Li, H. (2021). Using an inquiry-based science and engineering program to promote science knowledge, problem-solving skills and approaches to learning in preschool children. Early Education and Development, 32(5), 695-713. https://doi.org/10.1080/10409289.2020.1795333
Major, L., Warwick, P., Rasmussen, I., Ludvigsen, S., & Cook, V. (2018). Classroom dialogue and digital technologies: A scoping review. Education and Information Technologies, 23(5), 1995-2028. https://doi.org/10.1007/s10639-018-9701-y
Mercer, N., Hennessy, S., & Warwick, P. (2019). Dialogue, thinking together and digital technology in the classroom: Some educational implications of a continuing line of inquiry. International Journal of Educational Research, 97, 187-199. https://doi.org/10.1016/j.ijer.2017.08.007
Murphy, C., Smith, G., & Broderick, N. (2021). A starting point: Provide children opportunities to engage with scientific inquiry and nature of science. Research in Science Education, 51(6), 1759-1793. https://doi.org/10.1007/s11165-019-9825-0
Pifarré, M., Wegerif, R., Guiral, A., & del Barrio, M. (2014). Developing Technological and Pedagogical Affordances to Support the Collaborative Process of Inquiry-Based Science Education. In Digital Systems for Open Access to Formal and Informal Learning (pp. 159-179). Springer, Cham. https://doi.org/10.1007/978-3-319-02264-2_11
Pitjeng-Mosabala, P., & Rollnick, M. (2018). Exploring the development of novice unqualified graduate teachers’ topic-specific PCK in teaching the particulate nature of matter in South Africa’s classrooms. International Journal of Science Education, 40(7), 742-770. https://doi.org/10.1080/09500693.2018.1446569
Romine, W. L., Sadler, T. D., & Kinslow, A. T. (2017). Assessment of scientific literacy: Development and validation of the Quantitative Assessment of Socio‐Scientific Reasoning (QuASSR). Journal of Research in Science Teaching, 54(2), 274-295. https://doi.org/10.1002/tea.21368
Schneider, S., Krieglstein, F., Beege, M., & Rey, G. D. (2021). How organization highlighting through signaling, spatial contiguity and segmenting can influence learning with concept maps. Computers and Education Open, 2, 100040. https://doi.org/10.1016/j.caeo.2021.100040
Scott, P., Mortimer, E., & Ametller, J. (2011). Pedagogical link‐making: a fundamental aspect of teaching and learning scientific conceptual knowledge. Studies in Science Education, 47(1), 3-36. https://doi.org/10.1080/03057267.2011.549619
Şen, M., Demirdöğen, B., & Öztekin, C. (2022). Interactions among topic-specific pedagogical content knowledge components for science teachers: The impact of content knowledge. Journal of Science Teacher Education, 33(8), 860-887. https://doi.org/10.1080/1046560X.2021.2012630
Sun, M., Wang, M., Wegerif, R., & Peng, J. (2022). How do students generate ideas together in scientific creativity tasks through computer-based mind mapping? Computers & Education, 176, 104359. https://doi.org/10.1016/j.compedu.2021.104359
Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103-1127. https://doi.org/10.1016/j.compedu.2006.10.007
Wang, M., & Wegerif, R. (2019). From active‐in‐behaviour to active‐in‐thinking in learning with technology. British Journal of Educational Technology, 50, 2178–2180. https://doi.org/10.1111/bjet.12874
Wang, M., Kirschner, P. A., & Bridges, S. M. (2016). Computer-based learning environments for deep learning in inquiry and problem-solving contexts. In Proceedings of the 12th International Conference of the Learning Sciences (ICLS). https://doi.org/10.1016/j.chb.2018.06.026
Wang, M., Derry, S., & Ge, X. (2017). Guest editorial: Fostering deep learning in problem-solving contexts with the support of technology. Journal of Educational Technology & Society, 20(4), 162-165. https://www.jstor.org/stable/26229214?seq=1&cid=pdf
Wang, M., Wu, B., Kirschner, P. A., & Spector, J. M. (2018). Using cognitive mapping to foster deeper learning with complex problems in a computer-based environment. Computers in Human Behavior, 87, 450-458. https://doi.org/10.1016/j.chb.2018.01.024
Wegerif, R., & Yang, Y. (2011). Technology and dialogic space: lessons from history and from the ‘Argunaut’ and ‘Metafora’ projects. In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting Computer-Supported Collaborative Learning to Policy and Practice: CSCL2011 Conference Proceedings. Volume I — Long Papers (pp. 312-318). International Society of the Learning Sciences.
Wegerif, R., Kershner, R., Hennessy, S., & Ahmed, A. (2020). Foundation for research on educational dialogue. In Research methods for educational dialogue (pp. 9-26). Bloomsbury. https://doi.org/10.5040/9781350060111
Wu, H. L., Weng, H. L., & She, H. C. (2016). Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry. International Journal of Contemporary Educational Research, 3(1), 12-24.
Yang, Y. (2022). The Causal Map: Enhancing Creativity by Supporting the Construction of Alternate Problem Representations. Doctoral dissertation. Columbia University. https://doi.org/10.7916/wm21-0n80
Zura, M. P. V., Velasco, S. V. Y., Martínez, T. T. C., & Arboleda, J. I. C. (2022). Análisis del proceso de aprendizaje y comprensión. Caso de estudio principio de proporcionalidad. Revista Conrado, 18(S1), 128-138.

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Alba Guiral Herrera, Manoli Pifarré Turmo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las obras que se publican en esta revista están sujetos a los siguientes términos:
1. Los autores ceden de forma no exclusiva los derechos de explotación de los trabajos aceptados para su publicación en "RIED. Revista Iberoamericana de Educación a Distancia," y garantizan a la revista el derecho a ser la primera en publicar ese trabajo, igualmente, permiten a la revista distribuir obras publicadas bajo la licencia indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY 4.0). Se permite copiar y redistribuir el material en cualquier medio o formato, adaptar, remezclar, transformar y crear a partir del material para cualquier finalidad, incluso comercial. Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios.
3. Condiciones de auto-archivo. Se permite e incentiva a los autores a difundir electrónicamente la versión OnlineFirst (versión evaluada y aceptada para su publicación) de su obra antes de su publicación definitiva, siempre con referencia a su publicación en RIED, ya que favorece su circulación y difusión antes y así propiciar un posible aumento de su citación y alcance entre la comunidad académica. Color RoMEO: verde.