Una exploración de las barreras institucionales y personales para el compromiso académico en línea en una Universidad brasileña
DOI:
https://doi.org/10.5944/educxx1.36095Palabras clave:
aprendizaje en línea, compromiso académico de los estudiantes, facilitadores y barreras del compromiso académico, enseñanza superiorResumen
La reciente pandemia mundial ha aumentado la conciencia institucional en todo el mundo sobre la importancia de contar con opciones de aprendizaje en línea de alta calidad para los estudiantes. La participación de los estudiantes a menudo se correlaciona con resultados de calidad, como el éxito académico y la satisfacción de los estudiantes. Comúnmente se piensa que el compromiso del alumno tiene tres dimensiones importantes: compromiso afectivo, compromiso conductual y compromiso cognitivo (marco ACE). La participación también está habilitada o limitada por facilitadores/barreras. Tres categorías importantes de facilitadores/barreras son las características del alumno, el entorno personal y el entorno del curso. Los elementos en cada una de estas tres áreas permiten o son barreras para que los estudiantes participen plenamente en un curso. Esta investigación exploró cuáles son las barreras para que los estudiantes participen plenamente en sus cursos en línea en una universidad brasileña para determinar qué áreas serán más productivas para que los administradores y diseñadores de programas universitarios se centren en aumentar la participación académica de los estudiantes. Se aplicó una encuesta a estudiantes de la universidad brasileña en programas de pregrado en línea. Incluyó elementos relacionados con las barreras de los facilitadores de participación en las tres áreas descritas en el marco ACE y recibió 429 respuestas válidas. Las dimensiones afectivas y conductuales fueron percibidas por los estudiantes como los indicadores de compromiso más bajos en el marco ACE. Entre los facilitadores o las barreras para la participación, los de la categoría entorno del curso se percibieron predominantemente como barreras, mientras que las características del alumno y el entorno del estudiante se percibieron como facilitadores. Sin embargo, las tres categorías fueron más una barrera que un facilitador para más del 40% de los estudiantes. Aunque el entorno del curso es la barrera más controlada por las instituciones, comprender el entorno personal de los estudiantes y las características del aprendizaje puede ayudarlos a brindar apoyo y facilitar el compromiso académico en los cursos en línea.
Descargas
Citas
Attride-Stirling, J. (2001). Thematic networks: An analytic tool for qualitative research. Qualitative Research, 1(3), 385–405. https://doi.org/10.1177/146879410100100307
Borup, J., Graham, C. R., West, R. E., Archambault, L., & Spring, K. J. (2020). Academic communities of engagement: An expansive lens for examining support structures in blended and online learning. Educational Technology Research and Development, 68(2), 807–832. https://doi.org/10.1007/s11423-020-09744-x
Chen, B., Bastedo, K., & Howard, W. (2018). Exploring design elements for online STEM courses: Active learning, engagement & assessment design. Online Learning Journal, 22(2), 59–76. https://doi.org/10.24059/olj.v22i2.1369
Cho, M.H., & Shen, D. (2013). Self-regulation in online learning. Distance Education, 34(3), 290-301. http://dx.doi.org/10.1080/01587919.2013.835770
Christenson, S. L., Reschly, A. L., & Wylie, C. (2012). Handbook of research on student engagement. Springer.
Cleary, T. J., & Zimmerman, B. J. (2004). Self-regulation empowerment program: A school-based program to enhance self-regulated and self-motivated cycles of student learning. Psychology in the Schools, 4(15), 537–550. https://doi.org/10.1002/pits.10177
Dennen, V.P. Darabi, A.A., & Smith, L.J. (2007). Instructor-learner interaction in online courses: The relative perceived importance of particular instructor actions on performance and satisfaction. Distance Education, 28(1), 65-79. https://doi.org/10.1080/01587910701305319
Fayer, L. (2014). A multi-case study of student perceptions of online course design elements and success. International Journal for the Scholarship of Teaching & Learning, 8(1), Artículo 13. https://doi.org/10.20429/ijsotl.2014.080113
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109.
Guo, P., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of mooc videos. Proceedings of the First ACM Conference on Learning at Scale Conference, 41–50. https://doi.org/10.1145/2556325.2566239
Halverson, L. R., & Graham, C. R. (2019). Learner engagement in blended learning environments: A conceptual framework. Online Learning, 23(2), 145–178. https://doi.org/10.24059/olj.v23i2.1481
Han, I., & Shin, W. S. (2016). The use of a mobile learning management system and academic achievement of online students. Computers & Education, 102 (Noviembre 2016), 79-89. https://doi.org/10.1016/j.compedu.2016.07.003
Jung, Y., & Lee, J. (2018). Learning engagement and persistence in massive open online courses (MOOCS). Computers & Education, 122(Julio 2018), 9–22. https://doi.org/10.1016/j.compedu.2018.02.013
Kalyuga, S., & Liu, T. C. (2015). Guest editorial: managing cognitive load in technology-based learning environments. Educational Technology & Society, 18(4), 1-8.
Kaymak, Z. D., & Horzum, M. B. (2022). Student barriers to online learning as predictors of perceived academic learning and academic achievement. Turkish Online Journal of Distance Education, 23 (2), Artículo 7. https://doi.org/10.17718/tojde.1096250
Kim, K. R., & Seo, E. H. (2015). The relationship between procrastination and academic performance: A meta-analysis. Personality and Individual Differences, 82, 26-33. https://doi.org/10.1016/j.paid.2015.02.038
Klingsieck, K. B., Fries, S., Horz, C., & Hofer, M. (2012). Procrastination in a distance university setting. Distance Education, 33(3), 295-310. http://dx.doi.org/10.1080/01587919.2012.723165
Klingsieck, K. B., Grund, A., Schmid, S., & Fries, S. (2013) Why students procrastinate: A qualitative approach. Journal of College Student Development, 54(4), 397-412. https://doi.org/10.1353/csd.2013.0060
Koçdar, S., Karadeniz, A., Bozkurt, A., & Buyuk, K. (2018). Measuring self-regulation in self-paced open and distance learning environments. International Review of Research in Open and Distributed Learning, 19(1), 25–42. https://doi.org/10.19173/irrodl.v19i1.3255
Kumar, S., Martin, F., Budhrani, K., & Ritzhaupt, A. (2019). Award-winning faculty online teaching practices: Elements of award-winning courses. Online Learning, 23(4), 160-180. http://dx.doi.org/10.24059/olj.v23i4.2077
Lowenthal, P. R., West, R. E., Archambault, L., Borup, J., & Belt, E. S. (2021). Faculty perceptions of using synchronous video-based communication technology. Online Learning Journal, 25(4), 49–78. https://doi.org/10.24059/olj.v25i4.2890
Martin, F., & Bolliger, D. U. (2018). Engagement matters: Student perceptions on the importance of engagement strategies in the online learning environment. Online Learning, 22(1), 205-222. https://doi.org/10.24059/olj.v22i1.1092
Martin, F., Ritzhaupt, A., Kumar, S., & Budhrani, K. (2019). Award-winning faculty online teaching practices: Course design, assessment and evaluation, and facilitation. Internet and Higher Education, 42(Julio 2019), 34–43. https://doi.org/10.1016/j.iheduc.2019.04.001
Martin, F., Kumar, S., Ritzhaupt, A. D., & Polly, D. (2023). Bichronous online learning: Award-winning online instructor practices of blending asynchronous and synchronous online modalities. Internet and Higher Education, 56, Artículo 100879. https://doi.org/10.1016/j.iheduc.2022.100879
Martin, F., & Borup, J. (2022). Online learner engagement: Conceptual definitions, research themes, and supportive practices. Educational Psychologist, 57(3), 162–177. https://doi.org/10.1080/00461520.2022.2089147
Mayer, R. (2019). Thirty years of research on online learning. Applied Cognitive Psychology, 33(2), 152–159. https://doi.org/10.1002/acp.3482
Mayer, R. E. (2014). Cognitive theory of multimedia learning. En R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2ª ed.) (pp. 43–71). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.005
Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity. En R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2ª ed.) (pp. 279–315). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.015
Muilenburg, L. Y., & Berge, Z. L. (2005). Student barriers to online learning: A factor analytic study. Distance Education, 26(1), 29-48. https://doi.org/10.1080/01587910500081269
Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. Frontiers in Psychology, 8, 1–28. https://doi.org/10.3389/fpsyg.2017.00422
Panigrahi, R., Srivastava, P. R., & Sharma, D. (2018). Online learning: Adoption, continuance, and learning outcome—A review of literature. International Journal of Information Management, 43, 1–14. https://doi.org/10.1016/j.ijinfomgt.2018.05.005
Pelikan E. R., Korlat S., Reiter J., Holzer J., Mayerhofer M., Schober B., …, & Lüftenegger, M. (2021) Distance learning in higher education during COVID-19: The role of basic psychological needs and intrinsic motivation for persistence and procrastination–a multi-country study. Plos One, 16(10), 1-23. https://doi.org/10.1371/journal.pone.0257346
Rajabalee, Y. B., & Santally, M. I. (2021). Learner satisfaction, engagement and performances in an online module: Implications for institutional e-learning policy. Education and Information Technologies, 26(3), 2623–2656. https://doi.org/10.1007/s10639-020-10375-1
Shin, S., & Cheon, J. (2019). Assuring student satisfaction of online education: A search for core course design elements. En G. Marks (Ed.), Proceedings of International Journal on E-Learning 2019 (pp. 147-164). Association for the Advancement of Computing in Education (AACE).
Shin, W., & Kang, M. (2015). The use of a mobile learning management system at an online university and its effect on learning satisfaction and achievement. International Review of Research in Open and Distributed Learning, 16(3), 110–130. https://doi.org/10.19173/irrodl.v16i3.1984
Skinner, E., Furrer, C., Marchand, G., & Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic? Journal of Educational Psychology, 100(4), 765–781. https://doi.org/10.1037/a0012840
Soffer, T., & Cohen, A. (2019). Students’ engagement characteristics predict success and completion of online courses. Journal of Computer Assisted Learning, 35(3), 378–389. https://doi.org/10.1111/jcal.12340
Tate, T., & Warschauer, M. (2022). Equity in online learning. Educational Psychologist, 57(3), 192–206. https://doi.org/10.1080/00461520.2022.2062597
Tuiloma, S., Graham, C. R., Martinez Arias, A. M., & Parra Caicedo, D. M. (2022). Providing institutional support for academic engagement in online and blended learning programs. Education Sciences, 12(10), Artículo 641. https://doi.org/10.3390/educsci12100641
Young, A., & Norgard, C. (2006). Assessing the quality of online courses from the students' perspective. The Internet and Higher Education, 9(2), 107-115. https://doi.org/10.1016/j.iheduc.2006.03.001.
Descargas
Publicado
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.