La guerra de la Naturaleza, la carestía y la muerte como fuente del diseño de los seres vivos
DOI:
https://doi.org/10.5944/endoxa.46.2020.28849Palabras clave:
Filosofía de la Biología, Grafen, Evolución, Selección, Diseño BiológicoAgencias Financiadoras:
UNEDResumen
El proyecto del ‘Darwinismo Formal’ de Alan Grafen propone una formulación matemática de la teoría de Darwin que pretende demostrar que la selección natural moldea los rasgos fenotípicos a través de la maximización de la eficacia (fitness). El proyecto de Grafen reposa sobre tres premisas: (1) la selección natural es la única fuerza que moldea los fenotipos; (2) la eficacia es la única medida de le evolución; y (3) el diseño biológico surge como resultado de un proceso de optimización selectiva. En este trabajo argumentamos que estas tres premisas limitan la aplicabilidad del modelo a los hechos evolutivos más simples. Esto se debe a que Grafen implícitamente presupone un concepto de eficacia que es a la vez causa y efecto de las novedades fenotípicas; lo que, por un lado, vacía la teoría de Darwin de poder explicativo y, por el otro, lleva a ignorar la potencial contribución de fuerzas evolutivas no selectivas en la configuración de la complejidad biológica. Para superar estos escollos del proyecto de del Darwinismo Formal - que son además comunes a todos los modelos formales adaptacionistas - proponemos sustituir el concepto causal de eficacia por el de robustez, definiendo así el diseño biológico como forma y función en lugar de como maximización de la eficacia.Descargas
Citas
Adami, C., Ofria, C., Collier, T. C. (2000). Evolution of biological complexity. PNAS, 97(9): 4463-4468
Alberch, P. (1991). From genes to phenotypes: dynamical systems and evolvability. Genetica 84: 5-11
Bich, L. (2018). Robustness and autonomy in biological systems: how regulatory mechanisms enable functional integration, complexity and minimal cognition through the action of second-order control constraints. In M. Bertolaso, S. Caianiello & E. Serrelli (Eds.), Biological Robustness. Emerging Perspectives from within the Life Sciences:123-147. New York: Springer.
Birch, J. (2014). Has Grafen formalized Darwin?, Biol Philos, 29: 175-180
Carlson, J. M., Doyle, J. (1999). Highly Optimized Tolerance: A Mechanism for Power Laws in Designed Systems. Phys. Rev.E 60:1412
Charnov, E. L. (1976). Optimal Foraging, the Marginal Value Theorem, Theoretical Population Biology, 9 (2) 129-136
Darwin, C. R. (1872, 6th Edition). On the Origin of Species. John Murray, London.
Dupré, J. (2006). El legado de Darwin. Qué significa hoy la evolución. Katz
Eldredge, N. & Gould, S.J. (1972). Punctuated equilibria: an alternative to phyletic gradualism, in Models in paleobiology, Shopf, TJM Freeman, Cooper / Co.
Erwin, D. H. (2015). Novelties and Innovations in the History of Life. Current Biology 25, R930–R940
Ewens, W. J. (2014) Grafen, the Price equations, fitness maximization, optimization and the fundamental theorem od natural selection, Biol Philos, 29: 197-205
Fisher, R. A. (1930). Genetical theory of natural selection. Oxford Clarendon Press.
Gardner, A. (2008). The Price equation, Current Biology, 18 (5): 198-202
---------, (2009). Adaptation as organism design. Biology Letters, 5(6): 861.
----------, (2014a). Life, the universe and everything, Biol Philos, 29: 207-215
----------, (2014b). Adaptation of individuals and groups, en Bouchard, F, Huneman, P. (eds.), From Groups to Individuals, The MIT Press: 99-116
Gould S.J., Lewontin S.J. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist program, Proc. R. Soc. Lon., B 205: 581-598
Gould, J.S., Vrba, E. S. (1982). Exaptation – A Missing Term in the Science of Form, Paleobiology, 8 (1): 4-15
Grafen, A., (1999), Formal Darwinism, the individual-as-maximizing-agent and bet-edging, Proc. R. Soc. Lond. B, 266: 799-803
----------, (2000). Development of the Price equation and natural selection under uncertainty, Proc. R. Soc. Lond. B , 267,:1223-1227
----------, (2002). A first formal link between the Price equation and an optimization program, J. theor. Biol. 217: 75-91
----------, (2006a). Optimization of inclusive fitness, J. theor. Biol. 238: 541-563
----------, (2006b). A theory of Fisher reproductive value. J. Math. Biol. 53: 15-60
----------, (2007). The Formal Darwinism project: a mid-term report, J. Evol. Biol., 20 (4): 1243-1254
----------, (2008). The simplest formal argument for fitness optimization, Journal of Genetics, 87 (4): 421-433
----------, (2009). Formalizing Darwinism and inclusive fitness theory, Phil. Trans. R. Soc. B 364, 3135-3141
----------, (2014a). The formal Darwinism project in outline, Biol Philos, 29: 155-174
----------, (2014b). The formal Darwinism project in outline: response to commentaries, Biol Philos, 29: 281-292
Hamilton (1964). The Genetical Evolution of Social Behaviour, J,. Theoret. Biol., 7: 1-52
Houle, D. (1992). Comparing evolvability and variability of quantitative traits, Genetics 130: 195-204
Huneman, P. (2014). Formal Darwinism as a tool for understanding the status of organism in evolutionary biology, Biol Philos, 29: 271-279
Jablonka, E., Lamb, M. J. (2005). Evolution in Four Dimensions. Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. The MIT Press.
Jablonka, E., Lamb, M. J., Avital, E. (1998). Lamarckian’ mechanisms in darwinian evolution. Trends in Ecology & Evolution, Volume 13(5):206-210
Johnson, N. (2010). Simply Complexity: a Clear Guide To Complexity Theory. Oneworld Publications
Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomlyproduced genetic nets. J. Theor. Biol.22:437-467
———, (1993). The Origins of Order. Self-Organization and Selection in Evolution.. Oxford University Press.
———, (2000). Investigations. Oxford University Press.
Khammash, M. (2016). An engineering viewpoint on biological robustness. BMC Biology.
Kingsolver, J., Koehl, M. (1985), Aerodynamics, Thermoregulation, and the Evolution of Insect Wings –Differential Scaling and Evolutionary Change. Evolution, 39:488-504
Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11): 826-837.
Kitano, H. (2007). Towards a theory of biological robustness. Molecular Systems Biology, 3(1), 137-n/a.
Konishi, M., Volman, S. F. (1990). Comparative Physiology of Sound Localization in Four Species of Owls, Brain Behavior and Evolution, 36:196-215
———, (1994). Adaptations for bi-coordinate soundlocalization in owls. In: Schildberger, K. And Elsner, N. (Eds.) , Neural Basis of Behavioral Adaptations. Progress in Zoology;39:1–11.
Koonin, E. V., Wolf, Y. I (2009). Is evolution Darwinian or/and Lamarckian? Biology Direct, 4:42
Lehmann, L., Rousset F. (2014). Fitness, inclusive fitness, and optimization, Biol Philos, 29: 181-195
Luque, V. J. (2017) One equation to rule them all: a philosophical analysis of the Price equation. Biology and Philosophy 32(1): 97-125.
Lynch, M. (2007). The frailty of adaptive hypothesis for the origins of organismal complexity. PNAS, 104 (1):8597-8604
Masel, J., & Siegal, M. L. (2009). Robustness: Mechanisms and consequences. Trends in Genetics, 25(9): 395-403.
Maturana, H., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. Dordrecht: D. Reidel.
Mayr, E., (1960). The emergence of Novelty. In Tax, S. (ed.),The Evolution of Life, , Univ. of Chicago Press: 349–380.
McShea, D.W. (1991). Complexity and evolution: What Everybody Knows. Biol. Philos.6: 303-324
———, (1996). Perspective: Metazoan Complexity and Evolution: Is there aTrend?. Evolution, Vol. 50, No. 2: 477-492.
McShea, D.W., Brandon, R. (2010). Biology’s First Law: the tendency for diversity and complexity to increase in evolutionary systems. The University of Chicago Press.
Mills, S., Beatty, J. (1979), The Propensity Interpretation of Fitness, Philosophy of Science,46: 263-286
Millstein, R. L. (2006). Natural selection as a population-level causal process. British Journal for the Philosophy of Science, 57(4):627–653.
Mitchell, M. (2009). Complexity. A Guided Tour. Oxford University Press.
Moczek, A. P. (2008). On the origins of novelty in development and evolution. BioEssays 30: 432-477
Mossio, M., Bich, L., & Moreno, A. (2013). Emergence, closure and inter-level causation in biological systems. Erkenntnis, 78: 153-178.
Okasha, S., Paternotte. C. (2014), Adaptation, fitness and the selection-optimality links, Biol Philos, 29: 225-232
Orzack, S. H. (2014), A commentary on the ‘Formal Darwinism Project’: there is no grandeur in this view of life, Biol Philos, 29: 259-270
Payne, Roger S. (1971). Acoustic Location of Prey by Barn Owls (Tyto alba). J Exp Biol.54:535-573
Pigliucci, M. (2008a). Is evolvability evolvable? Nature Reviews Genetics, 9(1): 75-82.
----------, (2008b). Sewell Wright’s adaptive landscapes: 1932vs. 1988, Biol Philos, 23: 591-603
Price, G. R. (1972). Fisher's 'fundamental theorem' made clear. Annals of Human Genetics, 36(2): 129.
Rosenberg, A. (1982). On the Propensity Definition of Fitness. Philosophy of Science, Vol. 49, No. 2:268-273
Rosenberg, A., Williams, M. (1986). Fitness as Primitive and Propensity. Philosophy of Science, Vol. 53, No. 3:412-418
Rutherford,S. L. (2000). From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays.22(12):1095-105.
Saborido, C., Moreno, A. J., & Mossio, M. (2010). La dimensión teleológica del concepto de función biológica desde la perspectiva organizacional. Teorema: Revista Internacional de Filosofía, 29(3): 31-56.
Sarkar, S. (2014), Formal Darwinism, Biol Philos, 29: 249-257
Sober, E. (2009). Philosophy of biology. Westview Press.
Truchetet, M.-E.., Pradeu, T. (2018). Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system. Seminars in Immunology, 36:45-55
Waddington, C. H., (1957). The Strategy of the Genes. George Allen & Unwin
Wagner, A., (2011), The Origins of Evolutionary Innovations, Oxford University Press
———, (2015). Arrival of the Fittest, Oneworld Publications
Wagner, G. P., Altenberg, L. (1996). Complex adaptations and the evolution of evolvability, Evolution 50: 967-976
Wagner, G. P., Mezey, J., Calabretta, R. (2005), Natural Selection and the Origin of Modules, in Callebaut, W., Rasskin-Gutman, eds. (2005). Modularity. Understanding the Development and Evolution of Natural Complex Systems.The MIT Press:33-50
Wickstead, B., Gull, K.(2011). The evolution of the cytoskeleton. The Journal of Cell Biology, 194 (4)513-525
Whitacre J. M. (2012). Biological robustness: paradigms, mechanisms, and systems principles. Frontiers in genetics,3, 67.
Wright, S. (1932), The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth international congress of genetics: 356-366
Wright, S. (1982), The shifting balance theory and macroevolution, Ann. Rev. Genet. 16:1-19
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.