Curie´s Principle and Indeterminism
DOI:
https://doi.org/10.5944/endoxa.46.2020.23677Keywords:
Filosofía modernaAbstract
Curiés principle expresses an invariant connectiobn between symmetry of causes and symmetry of effects in deterministic systems. Here a probabilistic version of such principle is proposed and proved for indeterministic systems. In contrast with Curie´s principle, our probabilistic version involves the invariance of the probabilities that laws assign to physically possible final states of random processes under symmetry transformations, although with exceptions when a phenomenon breaks the symmetry in question.Downloads
Download data is not yet available.
References
Beiser, A. (1987). Concepts of Modern Physics.
Brading, K. et al (2017). "Symmetry and Symmetry Breaking".
Castellani E. & J. Ismael (2016). "Which Curie´s principle?".
Chalmers, A. L (1970). "Curie´s Principle".
Earman, J. (2004). "Laws, Symmetry and Symmetry Breaking".
Feynman, R. et al (1963). The Feynman Lectures on Physics.
Ismael, J. (1997). "Curie´s Principle".
Penrose, R. (2004). The Road to Reality.
Published
2020-12-23
How to Cite
Rolleri, J. L. (2020). Curie´s Principle and Indeterminism. ENDOXA, (46), 459–475. https://doi.org/10.5944/endoxa.46.2020.23677
Issue
Section
Ensayos en honor de Eloy Rada
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.