Curie´s Principle and Indeterminism

Authors

DOI:

https://doi.org/10.5944/endoxa.46.2020.23677

Keywords:

Filosofía moderna

Abstract

Curiés principle expresses an invariant connectiobn between symmetry of causes and symmetry of effects in deterministic systems. Here a probabilistic version of such principle is proposed and proved for indeterministic systems. In contrast with Curie´s principle, our probabilistic version involves the invariance of the probabilities that laws assign to physically possible final states of random processes under symmetry transformations, although with exceptions when a phenomenon breaks the symmetry in question.

Downloads

Download data is not yet available.

Author Biography

José Luis Rolleri, Universidad Autónoma de Querétaro

Doctor en Filosofía por la Universidad Nacional Autónoma de México.

Profesor de la Facultad de Filosofía en la Universidad Autónoma de Querétaro.

References

Beiser, A. (1987). Concepts of Modern Physics.

Brading, K. et al (2017). "Symmetry and Symmetry Breaking".

Castellani E. & J. Ismael (2016). "Which Curie´s principle?".

Chalmers, A. L (1970). "Curie´s Principle".

Earman, J. (2004). "Laws, Symmetry and Symmetry Breaking".

Feynman, R. et al (1963). The Feynman Lectures on Physics.

Ismael, J. (1997). "Curie´s Principle".

Penrose, R. (2004). The Road to Reality.

Downloads

Published

2020-12-23

How to Cite

Rolleri, J. L. (2020). Curie´s Principle and Indeterminism. ENDOXA, (46), 459–475. https://doi.org/10.5944/endoxa.46.2020.23677

Issue

Section

Ensayos en honor de Eloy Rada