Evaluation of Finishing Processes for DMLS Components

Authors

  • Luis Isasi-Sánchez Universidad Carlos III de Madrid, ROR: https://ror.org/03ths8210, Departamento Ingeniería Mecánica, Área Ingeniería de Organización https://orcid.org/0000-0001-6694-1901

DOI:

https://doi.org/10.5944/ribim.29.1.43568

Keywords:

DMLS, 4.0 Industry, AM (Additive Manufacturing), post-processing, surface finishing

Abstract

Nowadays, it is quite clear that additive manufacturing (AM) technologies are extremely useful for manufacturing various and complicated shapes. However, most of the different techniques that are grouped under
AM denomination, have still some important aspects to be improved, such as surface excessive roughness, unmelted particles or dimensional variations. As it is very well known within this sector, this is one of the key
aspects to optimize when using additive manufacturing, since it is directly related to post-processing time and
cost. In this work, a deep experimental analysis on DMLS manufactured parts surface finishing is presented,
comparing the results of different post-processing techniques both in finishing quality and cost.

Downloads

Download data is not yet available.

References

[1] DMLS Technology https://dmlstechnology.com/.

[2] Ahmed, A.A., Nazzal, M.A., Darras, B.M., Eltaggaz, A., Deiab, I.M., "Comparative sustainability assessment of powder bed fusion and solid-state additive manufacturing processes: The case of direct metal laser sintering versus additive friction stir deposition". Sustain. Mater. Technol., 39 (2024) e00858, doi:10.1016/j.susmat.2024.e00858.

[3] Idonial Inicio Available online: https://www.idonial.com/es/ (accessed on Mar 30, 2025).

[4] Busachi, A., Erkoyuncu, J., Colegrove, P., Martina, F., Watts, C., Drake, R., "A review of Additive

Manufacturing technology and Cost Estimation techniques for the defence sector. CIRP" J. Manuf. Sci. Technol. 19, 117–128, (2017) doi:10.1016/j.cirpj.2017.07.001.

[5] Jones, R., Raman, R.K.S., Iliopoulos, A.P., Michopoulos, J.G., Phan, N., Peng, D., "Additively manufactured Ti-6Al-4V replacement parts for military aircraft". Int. J. Fatigue, 124, 227–235 (2019)

doi:10.1016/j.ijfatigue.2019.02.041.

[6] Johnson, D., Bogers, M., Hadar, R., Bilberg, A., Jiang, R., Kleer, R., Piller, F.T., Gebhardt Andreas, J.-S.H,. Ålgårdh, J., Strondl, A. et al., "3D Printing The Next Revolution in Industrial Manufacturing". J. Ind. Ecol., 237, 1–10 (2017), doi:10.1016/j.ijinfomgt.2019.03.002.

[7] 3D Hubs Digital Manufacturing Trends Available online: https://www.smmt.co.uk/industry-topics/digitalmanufacturing/% 5Cnhttp://www.nist.gov/el/msid/upload/18_wKing.pdf.

[8] Anand, M., Das, A.K. "Issues in fabrication of 3D components through DMLS Technique: A review". Opt. Laser Technol., 139, (2021)106914, doi:10.1016/j.optlastec.2021.106914.

[9] Garaigordobil, A., Ansola, R., Canales, J., "Diseño Óptimo de Estructuras Porosas para Fabriacación Aditiva con el Método “Sequential Element Rejection and Admission” (SERA). Rev. Iberoam. Ing. Mecánica, 25, 65–73, (2021) doi:10.5944/ribim.25.2.2021.

[10] Villarón Osorno, I., Canales Martínez, A., Askasibar Díez, M., Ruiz Salas, J.E., Ukar Arrien, E.. Lamikiz Mentxaka, A., "Monitorización y evaluación de la influencia de la estrategia en el proceso laser DED". Rev. Iberoam. Ing. Mecánica, 25, 3–12 (2021), doi:10.5944/ribim.25.1.42191.

[11] Minhas, N., Thakur, A., Mehlwal, S., Verma, R., Sharma, V.S., Sharma, V., "Multi-variable Optimization of the Shot Blasting of Additively Manufactured AlSi10Mg Plates for Surface Roughness Using Response Surface Methodology". Arab. J. Sci. Eng., 46, 11671–11685 (2021), doi:10.1007/s13369-021-05654-z.

[12] Roozkhosh, P., Ghorbani, M., "Trainable Monte Carlo-MLP for cost uncertainty in resilient supply chain optimization with additive manufacturing implementation challenges". Appl. Soft Comput. 168, 112501, (2025), doi:10.1016/j.asoc.2024.112501.

[13] Ashwath, P., Anthony Xavior, M., Jeyapandiarajan, P., Joel, J., Batako, A., "Surface Finish and Property Evaluation of Direct Metal Laser Sintered (DMLS) Al-Si-10Mg alloy". J. Phys. Conf. Ser. 2198, 012055, (2022), doi:10.1088/1742-6596/2198/1/012055

[14] Coranic, T., Gaspar, S., Pasko, J., "Utilization of Optimization of Internal Topology in Manufacturing of Injection Moulds by the DMLS Technology". Appl. Sci., 11, 262 (2020) doi:10.3390/app11010262

Downloads

Published

2025-04-30

How to Cite

Isasi-Sánchez, L. (2025). Evaluation of Finishing Processes for DMLS Components. Revista Iberoamericana de Ingeniería Mecánica, 29(1), 57–67. https://doi.org/10.5944/ribim.29.1.43568

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.