Distributed Supervised Sentiment Analysis of Tweets: Integrating Machine Learning and Streaming Analytics for Big Data Challenges in Communication and Audience Research
DOI:
https://doi.org/10.5944/empiria.42.2019.23254Keywords:
sentiment analysis, Twitter, Big Data, Streaming, machine learning, communication and audience research, Apache SparkAbstract
The large-scale analysis of tweets in real-time using supervised sentiment analysis depicts a unique opportunity for communication and audience research. Bringing together machine learning and streaming analytics approaches in a distributed environment might help scholars to obtain valuable data from Twitter in order to immediately classify messages depending on the context with no restrictions of time or storage, empowering cross-sectional, longitudinal and experimental designs with new inputs. Even when communication and audience researchers begin to use computational methods, most of them remain unfamiliar with distributed technologies to face big data challenges. This paper describes the implementation of parallelized machine learning methods in Apache Spark to predict sentiments in real-time tweets and explains how this process can be scaled up using academic or commercial distributed computing when personal computers do not support computations and storage. We discuss the limitation of these methods and their implications in communication, audience and media studies.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Los autores que publican en esta revista están de acuerdo con los siguientes términos:a) Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Licencia Internacional Creative Commons CC BY-NC-SA 4.0.
b) Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.


