Leibniz’s Double Philosophical and Technical Perspective Concerning Infinitesimals: A Path Towards the Ideality of Mathematical Objects
DOI:
https://doi.org/10.5944/endoxa.50.2022.27336Abstract
This paper examines the question regarding the fictionality of infinite
and infinitely small quantities from the point of view of the ideality of the mathematical
objects. It maintains the hypothesis that already around 1676 Leibniz deployed
arguments for establishing a separation between the fields of mathematics and that of
concrete reality, and that this split especially affects the status of mathematical fictions.
Thus begins a line of development begins that culminates later in Leibniz’s conception
about the distinction between what is ideal and what is real.
Downloads
References
ANDERSEN, K., GIUSTI, E. y JULLIEN, V. (2015). «Cavalieri’s Indivisibles», en: JULLIEN, V. (ed.). Seventeenth-Century Indivisibles Revisited, Dordrecht: Birkäuser, pp. 31-55.
ARQUÍMEDES (2005). Tratados I. Sobre la esfera y el cilindro – Medida del Círculo – Sobre los conoides y esferoides (introducción, traducción y notas de Paloma Ortíz García), Madrid: Gredos.
ARTHUR, R. T. W. (2009). «Actual Infinitesimals in Leibniz’s Early Thought», en: KULSTAD, M., LAERKE, M. y SNYDER, D. (eds.). The Philosophy of the Young Leibniz, Stuttgart: Franz Steiner Verlag, pp. 11-28.
ARTHUR, R. T. W. (2018). Monads, Composition, and Force. Ariadnean Threads Through Leibniz’s Labyrinth, Oxoford: Oxford University Press.
CRIPPA, D. (2014). Impossibility results: from geometry to analysis; a study in early modern conceptions of impossibility, Tesis doctoral, Université Paris Diderot Paris 7.
CRIPPA, Davide (2017). «Leibniz and the Impossibility of Squaring the Circle», en: PISANO, R., FICHANT, M., BUSSOTTI, P. y OLIVEIRA, A. R. E. (eds.). The Dialogue between Sciences, Philosophy and Engineering. New Historical and Epistemological Insights. Homage to Gottfried W. Leibniz 1646-1716, Londres: College Publications.
CRIPPA, Davide (2018). «On Leibniz’s theorem about the impossibility of squaring the circle and its relation with James Gregory’s Vera circuli quadratura», Quaderns d’Història de l’Enginyeria, XVI, pp. 209-232.
CRIPPA, Davide (2019). The Impossibility of Squaring the Circle in the 17th Century. A Debate Among Gregory, Huygens and Leibniz, Cham: Birkhäuser.
ESQUISABEL, O. M. y RAFFO QUINTANA, F. (2017). «Leibniz in Paris: a discussion concerning the infinite number of all units», Revista Portuguesa de Filosofía, 73/3-4, pp. 1319-1342.
ESQUISABEL, O. M. (2019). «Analogías e invención matemática en Leibniz. El caso de la matemática infinitesimal», en: ARROYO, G. y SISTO, M. (comp.). La lógica de la analogía. Perspectivas actuales sobre el rol de las analogías en ciencia y en filosofía, Malvinas Argentinas: Universidad Nacional de General Sarmiento, en prensa.
GERHARDT, C. I. (ed.) (1846). Historia et origo calculi differentialis, Hannover: Im Verlage der Hahn‘schen Hofbuchhandlung.
JULLIEN, V. (ed.) (2015). Seventeenth-Century Indivisibles Revisited, Dordrecht: Birkäuser.
KNOBLOCH, E. (2002). «Leibniz’s Rigorous Foundation of Infinitesimal Geometry by Means of Riemannian Sums», Synthese, 133, pp. 60-73.
LEIBNIZ, G. W. (1849-1863). Leibnizen Mathematische Schriften (ed. C. I. Gerhardt). Berlin / La Haya: A. Ascher & Comp / H.W. Schmidt. [Citado como GM, seguido de número de volumen (en números arábigos) y del número de página]
LEIBNIZ, G. W. (1923 y ss.). Sämtliche Schriften und Briefe (edición de la Academia de Ciencias de Berlín), Berlín (antes: Darmstadt; Leipzig): Walter de Gruyter Verlag (antes: Otto Reichl Verlag; Akademie-Verlag). [Citado como A, seguido de la serie (en números romanos), del volumen (en números arábigos) y del número de página. Por ejemplo: A VII 6, 521]
LEIBNIZ, G. W. (2009). Obra filosóficas y científicas (ed. Juan Arana), Granada: Comares, volumen 8. [Citado como OFC, seguido del volumen (en números romanos) y del número de página. Por ejemplo: OFC 8, p. 140]
LEIBNIZ, G. W. (2014). «Introducción a la aritmética de los infinitos (1672)» (comentario introductorio y traducción de Federico Raffo Quintana), Notae Philosophicae Scientiae Formalis, 3/1, 47-69.
LEIBNIZ, G. W. (2019). Sobre los Infinitos (prólogo, selección, traducción y notas de Oscar Esquisabel y Federico Raffo Quintana), Buenos Aires: Excursus - Centro de Investigaciones Filosóficas.
METIUS, Adriaan (1611). Arithmeticæ et geometriæ practica, Franeker.
METIUS, Adriaan (1633). Manuale arithmeticae et geometriae practicae, Amsterdam.
RABOUIN, David (2015). «Leibniz’s Rigorous Foundations of the Method of indivisibles», en: JULLIEN, V. (ed.). Seventeenth-Century Indivisibles Revisited, Dordrecht: Birkäuser, pp. 347-364.
RAFFO QUINTANA, Federico (2018). «Leibniz on the requisites of an exact arithmetical quadrature», Studies in History and Philosophy of Science, 67, pp. 65-73.
RAFFO QUINTANA, Federico (2019). Continuo e infinito en el pensamiento leibniziano de juventud, Granada: Comares.
SCHOLZ, Lucie (1934). Die exackte Grundlegung der Infinitesimalrechnung bei Leibniz. Inaugural Dissertation zur Erlangung der Doktorwürde der Hohen Philosophischen Faultät der Philipps-Universität zu Marburg, Marburg, Kretschmer.
VAN CEULEN, Ludolph (1596). Vanden Circkel, Delft.
WALLIS, John (1656). Arithmetica infinitorum, Oxford.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 ENDOXA

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors who publish in this journal must agree to the following terms:
- The authors hold author’s rights and guarantee the journal the right to be the first to publish the work as well as the Creative Commons Attribution License which allows others to share the work as long as they acknowledge the authorship of the work and its initial publication in this journal.
- The authors can establish, on their own, additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), always acknowledging the initial publication in this journal.
- The authors are allowed and encouraged to disseminate their work electronically (for example, in institutional repositories or on their own webpages) before and during the submission process, as this can give rise to productive exchanges, as well as earlier and increased citing of the works published (See The Effect of Open Access).

