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Abstract: Curie’s principle expresses an invariant connection between the symme-
try of causes and symmetry of effects in deterministic systems. Here a probabilistic ver-
sion of such principle is proposed and proved for indeterministic systems. The concept 
of symmetry in question embraces the invariance of the holding of the laws of physics 
under certain transformations. In contrast with Curie’s principle, which involves the 
invariance of the effects under symmetry transformations, our probabilistic version 
involves invariance of the probabilities that laws assign to physically possible final states 
of random processes under symmetry transformations, although with exceptions when 
a phenomenon breaks the symmetry in question.
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Resumen: El principio de Curie expresa una conexión invariante entre la simetría 
de las causas y la de los efectos en sistemas deterministas. Aquí se propone, y se demues-
tra, una versión probabilista de tal principio para sistemas indeterministas. El concepto 
de simetría en cuestión envuelve la invariancia de la validez de las leyes de la física bajo 
ciertas transformaciones. En contraste con el principio de Curie, el cual involucra la 
invariancia de los efectos bajo transformaciones de simetría, nuestra versión probabilista 
involucra la invariancia de las probabilidades que las leyes asignan a los estados finales 
físicamente posibles de procesos aleatorios bajo transformaciones simétricas, aunque 
con excepciones cuando un fenómeno rompe la simetría en cuestión. 
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1. Introduction

The principle that Pierre Curie formulated in his Sur la symétrie dans les 
phénomènes physiques (1894) has an intended causal character for synchronic 
physical systems, included the medium, governed by deterministic laws, where 
some feature of a given system could be regarded as the cause of other feature 
of the same system simultaneously. This principle contrasts with the view of 
deterministic causality formulated by Pierre Simon de Laplace in his famous 
Essai philosophique sur les probabilités (1814), where he expressed that view in 
diachronic terms for the past, present and future states of the universe ruled by 
Newtonian laws. The originality and worth of the principle proposed by Curie 
consists in that he explicitly states it in terms of symmetries of both causes and 
effects, and invariance properties of deterministic laws. However, in his original 
version, Curie’s Principle (CP) is not suitable, at least not directly, to diachronic 
systems reigned by dynamic laws. 

 Chalmers (1970) reformulated CP in a way which becomes appropriate 
for dynamic systems, and since then his version is considered as the “received 
view” of CP.1 Most philosophers that had written on CP discuss the meaning of 
this principle (how it can be interpreted?) and its applications to physical systems 
which display symmetrical properties under some groups of transformations (see, 
e.g., Chalmers, 1970; Ismael, 1997; Roberts, 2013; Norton, 2016; Castellani 
and Ismael, 2016). It is not our intention to discuss the question about the mea-
ning of CP, instead we shall adopt Chalmers’ reformulation. Also, some of those 
philosophers have proposed proofs of CP giving some distinct but possibly 
equivalents  versions (Chalmers, 1970; Earman, 2002; Castellani and Ismael, 
2016). We will attend these proofs later on. All the previous issues have been 
focused, following Curie, on deterministic physical systems. However, Jenann 
Ismael (1997) poses questions about the possible application of a reformulation 
of CP to indeterministic systems governed by probabilistic laws, and in particu-
lar, quantum systems. He responds affirmatively to both questions (1997: 176). 
We agree with him, and so, borrowing some of his key ideas, in this paper we 
mainly try to give a probabilistic version of CP, to provide a proof of such version 
and, finally, to explore its plausibility for some quantum systems.

1  See Castellani and Ismael (2016: 1002).
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2. Invariance and symmetry

We can distinguish between the two following assertions. First, laws of phy-
sics hold invariably across an intended domain of application. Second, laws of 
physics hold invariably under symmetry transformations.2 These two claims are 
related with, but they are independent of, CP. One can find them in books of 
physics, e.g., in Feynman et al (1963) and Beiser (1987). The two levels of inva-
riance are indeed different. The first one refers to an invariance of the manner 
in which physical systems change in accordance with some law. The second one 
refers to a higher invariance, to an invariance of the laws themselves, associated 
with the symmetry operations such as translation in space, translation in time, 
rotation in a fixed angle, inversion of time, reflection of space, and exchange of 
matter-antimatter (charge conjugation). Thus, on the one hand, the relata of 
invariance are physical systems and the processes they suffer, that is expressed by 
a law of evolution which prescribes the possible changes of state of the systems 
allowable by such a law. One the other hand, at a high level of abstraction, the 
relata of invariance are laws themselves expressed by principles of symmetry 
which state the sort of transformations under which the holding of the laws of 
evolution is preserved. 

Curie’s principle in his own words: “When certain causes produce certain effects, 
the symmetry elements of the causes must be found in their effects” (1894: 312), 
asserts something else and stronger than the two former assertions, namely: 
the symmetry of the causes is preserved in the effects under symmetry transfor-
mations.3 When one converts this principle, as Chalmers does, from synchro-
nic physical situations to diachronic physical systems, one presupposes the two 
previous assertions. Indeed, these two claims are assumptions to obtain CP.4 A 

2  Elena Castellani points out the former distinction when she says that “Symmetries can be 
attributed to physical states or to physical laws” (2003: 321) and adds that there is a connec-
tion between both sorts of symmetries, linking this distinction with an elucidation of the 
meaning of symmetry breaking. 
3  It seems that this claim is synthetic in character, not virtually analytical (see Earman, 2002: 
178), and that it could be unfulfilled in some cases. The fact that some versions of CP can be 
proved in a simple way is due to the premises which are assumed; in particular, to the 
assumptions that the state of the system, in a given time, is symmetrical and to the attributed 
invariance of deterministic laws. 
4  We can see this in the proof of CP due to Castellani and Ismael (2016: 1008-1009). The 
first former assertion amounts to the assumption about the holding of deterministic dyna-
mics laws, whereas the second former assertion is involved in the assumption that such laws 
are invariant under certain symmetry transformation. 
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central question is about how we must understand the assertion that causes are 
symmetrical, which is the point of start of CP. Chalmers provides a notion of 
symmetry transformation which could be key to clarify that: Given a descrip-
tion of a physical system by means of the specification of its magnitudes then a 
symmetry transformation for the system is an operation performed on it which 
leaves the specification unchanged (cf. 1970: 134-135). Chalmers opts correctly 
to speak in a formal mode, in contrast to a material mode one, i.e., instead of 
talking directly about physical systems and their states he talks about the descrip-
tions of physical systems and their states in reference to a conceptual framework, 
since “the descriptions of a system will always be some abstraction which will 
depend on the conceptual framework in which, or the theoretical standpoint 
from which, it is viewed, so that, in a sense, a symmetry transformation is a pro-
perty of the description rather than of the physical system itself.” (1970: 135). 
In that way, one can say that a cause C is symmetrical under a transformation 
T, T(C), if T does not change the description of C, i.e., if the description of the 
untransformed cause is the same, or equivalent, to the description of the trans-
formed cause. The same applies to the effects: an effect is symmetrical under T 
if the description of E is equal, or equivalent, to the description of T(E), i.e., 
the effect transformed by T. The converse of CP is the claim that if under T, 
the specification of the effect E is not equal to that of T(E) then the associated 
cause C is different from T(C). What does mean that a cause C is asymmetrical 
under certain transformation T is a controversial issue related with the so-called 
symmetry breaking, which we overlook here.

3. Curie’s principle for deterministic systems

The proof of Curie´s Principle due to Castellani and Ismael (2015) is quite 
different from the one that we provide below. They follow Chalmers’ (1970) 
approach to the issue consisting of extending CP to dynamic systems ruled by 
deterministic laws, and demonstrating its validity and applications. Indeed, they 
reproduce formally the brief proof via reduction to absurd due to Chalmers’ 
reformulation of CP in such a way to make possible its applications to the evo-
lution of physical systems in terms of causes and effects, providing a deductive 
argument. The conclusion of such argument is the claim about the symmetry of 
the effects E under a symmetrical transformation T, i. e., T(E) = E. The premise 
of the argument is a general formulation of a deterministic law with the form: 
E = f(C), where f is a function equivalent to a set of ordered pairs of causes and 
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effects (C, E), which is known if the laws of nature are known. The proof is based 
on invariance properties of deterministic laws as follows:

 E = f(C)   Deterministic law

 T (E) = T(f(C))  Apply T

 T (E) = f(T (C))  T -symmetry of the law, i.e., Tf = fT

 T (E) = f(C)   T -symmetry of the cause, i.e., T(C) = C

 T (E) = E   Again by Determinism 

  This proof links symmetry transformations with deterministic physical 
laws.5 It seems as a proof of the symmetry of such laws under certain transfor-
mations, according to Curie’s thesis: “The symmetries are in the laws of the 
phenomena not in the phenomena themselves”.6 Nevertheless, it is not clear that 
the previous deduction is a proof of CP. According to Castellani and Ismael it 
amounts to a demonstration of Chalmers’ claim: CP follows from the invariance 
properties of physical laws if these are deterministic. It may be closer to Curie’s 
Principle, as formulated before: ‘When certain causes produce certain effects, the 
elements of symmetry of the causes must be founded in the effects produced’, to 
say that for synchronic systems the symmetry of the effects under a transforma-
tion T follows from the symmetry of the causes under the transformation T and 
the invariance properties of the laws involved if these latter are deterministic.  

The proof of the latter formulation of CP for diachronic systems is as follows:

 T(C) = C   T -symmetry of the causes

 f(T(C)) = f(C)   Apply the function f

 T(f(C)) = f(C)  T -symmetry of the law, i.e., fT = Tf

 T(E) = E   By the deterministic law 

5  It is worth to note that in the former deduction the equation E = f(C) is used both as 
 premise and as a rule of inference (it is similar to use the tautology (P  Q) & (Q  R) 
(P R) as our main premise and later on apply it as a rule to infer the conclusion). 
6  Quoted by Earman (2004: 1231) from Curie (1894: 401).
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Thus, we can think of Curie’s Principle for dynamic systems in the following 
terms: If the causes are symmetrical and the laws are symmetrical then the effects 
are symmetrical, granted that the laws involved are deterministic.

There are two possible exceptions to CP on deterministic systems. About 
the T -symmetry of f: When a function f is not invariant under some T it could 
mean that there is a phenomenon that breaks the symmetry of the correspond-
ing law under such transformation T, that is, the law does not hold under the 
transformation T of the physical system involved (this does not means that the 
law that provides the function f does not hold at all, but that it does not hold 
when the physical system involved is transformed by the operation T). And in 
respect of the T -symmetry of the causes: If the effects are not symmetrical (i.e., 
they are not invariant under the operation T), then there is a hidden asymmetry 
in the causes, by the converse of Curie’s Principle.

Besides, the principle does not hold when the law and the physical system 
involved are not deterministic, that is, when the causes are T-symmetrical and 
the law is T-symmetrical, but in both the untransformed system and the trans-
formed system one obtains alternatively two, or more, different and mutual 
excluding effects. Can we obtain a version of Curie’s principle for such inde-
terministic system? The point about this question consists in elucidating the 
role principles of symmetry play on indeterministic systems in connection with 
probabilistic laws. 

Earman (2002) provides also a formal proof of CP which is in some respect 
equivalent to the prior proof due to Castellani and Ismael. Firstly, he formulated 
such a principle as a conditional statement and, secondly, he offered the formal 
proof for a Schrödinger dynamic. The former is as follows: If (CP1) the laws 
of motion/field equations governing the system are deterministic, and (CP2) 
the laws of motion/field equations governing the system are invariant under a 
symmetry transformation, and (CP3) the initial state of the system is invariant 
under such symmetry, then (CP4) the final state of the system is also invariant 
under such symmetry (2002: 176). Earman comments quite right that if an 
asymmetry appears in a physical system, it is due to one (or more) of three fac-
tors which correspond to the failure of one (or more) premises: either the initial 
state is asymmetric, or the laws are not symmetric, or determinism does not hold 
(2004: 177). Earman’s version of CP proof for a Schrödinger dynamics resides 
in considering the “determinism” of physical systems as the evolution from an 
initial state 0 at time t0 to a final state 1 at time t1 given by an automorphism 
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 of the algebra of observables in a Hilbert space, which amounts to premise 
(CP1) in the sense that it permits to say that for any pairs of evolutions allowed 
by the laws involved, sameness of initial states implies sameness of final states. 
Besides, if we suppose that  is invariant under a transformation  (CP2), and if 
the initial state 0 is -invariant (CP3), then the evolved state 1:= 0) is also 
-invariant (see proposition 2 in the appendix for his formal proof ). He deems 

that, as in the classical case, this formulation of CP for Schrödinger dynamics 
is also virtually analytic (2002: 188). Nevertheless, Earman is not concerned 
about how CP could be formulated, and proved, for indeterministic systems 
where we cannot suppose a premise like (CP1) for the evolution of quantum 
systems.7 What is missing is to express CP for systems governed by Born’s rule 
or Born’s probabilistic version of Schrödinger equation. We will try to provide 
such probabilistic formulation below. 

4. Curie’s principle for indeterministic systems

4.1 Probabilistic Curie’s Principle

Let us now explore how could Curie’s Principle be for indeterministic systems 
and, hence, for probabilistic laws. Chalmers says that “The laws of a deterministic 
theory enable the effect, E, to be derived from the cause, C. We can write E = 
f(C), where ‘f’ denotes a function which is known if the laws are known.” (1970: 
140). Similarly, we can say that the laws of an indeterministic theory enable 
the probability distribution of physically possible final states, SFi, to be derived 
from (a description of ) the initial state, SI. We can write L(SI) = p(SFi) where 
‘L’ designs a probabilistic law and ‘p’ denotes a probability function which is 
known if the law L is known. Or, as Ismael says, a probabilistic law maps state-
descriptions of indeterministic systems onto probability functions which define 
a distribution of probability over the set of physically possible state descriptions 
(see 1997: 176-177). 

An appropriate notion of symmetry for the laws of an indeterministic theory 
could be as follow: We say that a probabilistic law L is symmetrical under a 

7  The main concern of Earman in that paper consists in the topic of spontaneous symmetry 
breaking in relation to Curie’s Principle.
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transformation T if L(T(SI,)) = T (L(SI,)), which allows to prove, as we will see, 
that the probability values that L assigns to all physically possible final states SFi, 
given the initial state SI, are invariant under T, i. e., for all SFi in {SF}, p(SFi) = 
p(T(SFi)). The involved key idea consists in that the probability of the evolution 
of an untransformed system to a certain final state is equal to the probability of 
the evolution of the transformed system by T to the same final state. Perhaps, we 
can say that a probabilistic law L is asymmetrical under a transformation T, if for 
some possible final state SFj, p(SFj) ≠ p(T(SFj)), i.e., the probability value of 
SFj is not invariant under T however, the issue about the symmetry breaking 
is a controversial question and it goes beyond the scope of this paper (see, e.g., 
Earman, 2002 and Castellani, 2003).

Suppose that L is a probabilistic nomic statement such that for any pair <SI, 
{SF}>, which represents an indeterministic process in a physical system S (the 
evolution of S from the initial state SI to one of its final states in {SF}), L(SI) = 
p(SFi), for all <SI, SFi> with i ≥ 2. A probabilistic version of Curie’s Principle 
(PCP) is the following: If the initial state of a (kind of ) indeterministic system 
is symmetrical under the transformation T and the probabilistic law L is sym-
metrical under T, then the probabilities of the physically possible final states are 
symmetrical under T.

So let us prove the following formal enunciation of Curie’s Principle for 
indeterministic systems ruled by probabilistic laws: If SI = T (SI) and L(T (SI)) 
= T (L(SI)) then p(SFi) = p(T(SFi)), given that L(SI) = p(SFi), for every SFi in 
the set {SF} of the physically possible final states, with i ≥ 2. 

Proof. For all SFi in {SF}:

(1) SI = T(SI T

(2) L(T(SI)) = T(L(SI L T

(3) L(SI) = T(L

(4) L(SI) = L(T(SI

(5) p(SFi) = p(T(SFi L
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Thus, the probability values of the physically possible final states, which the 
probabilistic law L assigns to them, are invariant under the symmetry operation 
T. This follows from the symmetry of the initial states under T and the symmetry 
of L under T, as it is required. 

The left side of the former proof amounts to whenever one has an inde-
terministic system in a certain initial state and applies a probabilistic law to it, 
one obtains a probability distribution to its physical possible final states. We 
can think of Born’s version of Schrödinger equation as an exemplar law of this, 
which assigns a probability value to every superposed states. The right side of that 
proof says that whenever one has an indeterministic system whose initial state is 
symmetrical under a transformation T and one applies to it a probabilistic law 
which is symmetrical by T, then one obtains a probability distribution of the 
physically possible final states of the transformed system. This PCP claims that 
Born’s rule, or the nomic probabilistic equation appropriate for the quantum sys-
tem in consideration, applies to the untransformed system and the transformed 
system as well: if Born’s rule holds on the untransformed system then it holds 
also on the transformed system by T. 

 We can consider as examples of such transformation T the symmetry opera-
tions of interchange of particles by identical particles, translation in space and in 
time, matter-antimatter (charge conjugation), and inversion of space −although 
the two last in some nuclear interactions do not conserve the quantity associated, 
i.e., charge parity C and space parity P, respectively. 

There are some possible counter examples of PCP in indeterministic systems. 
Suppose that for some SFj, p(SFj p(T(SFj)). Then, premise (1) or premise (2) 
of the former deductions are not fulfilled. If (1) is not satisfied the initial state 
is not T-symmetrical after all , then there is a hidden asymmetry in the initial 
state of the system. For quantum systems one could say that there is a hidden 
local variable, perhaps introduced by the transformation T. If (2) is not satisfied 

the law L is not T-symmetrical after all  means that the holding of the law L 
is not invariant under the transformation T, which involves the violation of the 
supposed symmetry of the law L. In other words, if one transforms the system 
according to the supposed symmetry operation T, the law L does not apply any 
more to the transformed system. In such case, there is a phenomenon that breaks 
the invariance of the holding of the law L. This is the case on weak interactions 
under reflection of space in beta decay, known as the violation of space parity P 
(see Penrose, 2004: 25.3). 
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4.2 Salva Probabilitas

As we have seen, the probabilistic version of Curie’s principle for indeter-
ministic systems is quite different from CP in that the invariance asserted is not 
about the physical effects, but about the probabilities of the physically possi-
ble effects. We can say that PCP expresses that the symmetry transformations 
applies to physical laws salva probabilitas. For that reason, it is not Schrödinger 
equation our focus of concern, but Bohr’s rule instead, as far as one can define 
a probability distribution over the set of superposed states for a given system in 
evolution through it.

Recall that relative to the conceptual framework of standard quantum 
mechanics, for any event x in a quantum system Born’s rule equals the probabi-
lity of x with the absolute square of a wave function (x), i.e., p(x) = (x) 2. In 
accordance with the superposition principle −if an individual quantum system S 
could be in a state represented by b1  and also in a state represented by b2 then 
any linear combination  = c1 b1  + c2 b2  represents a state of S (with c1 and c2 
complex numbers)−, we can obtain a probability distribution when the function 

 expands to a superposition state ∑jn bj , i. e., we obtain (x) 2 = ∑jn cj bj
2, 

where for each individual state bk , component of the superposition, ck bk
2 

represents its probability value. Thus, under Born´s probabilistic interpretation 
of Schrödinger´s wave function, the state descriptions of quantum systems are 
given in terms of state superpositions with associated probability distributions, 
not in terms of deterministic equations, which assign to every possible event x, 
a probability that it will occur: p(x) = (x) 2.

4.3 Quantum processes and PCP 

Again, the question of our concern here about quantum indeterministic 
processes is whether symmetry operations preserves the probabilities values from 
the untransformed system to the transformed system, i.e., if symmetry transfor-
mations hold salva probabilitas. 

Earman maintains that: “It would be a worthwhile project to develop a sta-
tistical form of CP that could apply in cases where strict determinism fails but 
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statistical determinism holds (2002: 180). It seems that he considers that a des-
cription of the evolution of a quantum system by means of Schrödinger equation 
corresponds to a deterministic evolution. However, in order to give account of 
genuine indeterministic processes (random state changes of quantum systems) 
in standard quantum theory it would be better to apply Born’s rule to dynamics 
equations to obtain a superposition of the physically possible final states from 
an initial state. Such superpositions represent the random character of quantum 
processes since they assign probabilities to the physically possible final states 
of the developed systems. And, of course, it is a matter of physics that if some 
kind of process (e.g., Compton scattering effect) has a random character and a 
quantum equation assigns transition probabilities to the alternative physically 
possible final states, it assigns the same transition probabilities to every instance 
of that kind. 

The former is just an illustrative case of a kind of indeterministic process. 
In general, there are quantum equations that hold invariantly in indeterministic 
processes which involve gravitational, electromagnetic, strong, and weak interac-
tions. All this is just physics. Our question here with respect to PCP is whether 
the probability distributions that quantum equations assign to quantum random 
processes are preserved under symmetry transformations. In general, the answer 
is affirmative. Feynman indicates a case which illustrates the point: 

If  is the amplitude for some process or other, we know that the abso-
lute square of  is the probability that the process will occur. Now if some-
one else were to make his calculation not with this , but with a which 
differs merely by a change in phase (let be some constant, and multiply 
ei  imes the old ), the absolute square of , which is the probability of 
the event, is then equal to the absolute square of  = ; 2 = 2. 
Therefore the physical laws are unchanged if the phase of the wave function 
is shifted by an arbitrary constant. (1963: 52-3). 

The former is the quantum mechanical phase symmetry which shows our 
claim: laws of quantum physics do not change under symmetry transformation, 
which entails that the probability distributions that these laws assign to diverse 
kinds of quantum processes are preserved under such transformations. We can 
add to the prior symmetry transformation the symmetry operations that Feyn-
man indicates under which various physical phenomena remain invariant: trans-
lation in space, translation in time, rotation in space, uniform velocity in straight 
line (Lorentz transformation), reversal of time, reflection of space, interchange 



470 

ÉNDOXA: Series Filosóficas, n.o 46, 2020, pp. 459-475. UNED, Madrid

of identical atoms or identical particles, and matter-antimatter (charge conju-
gation). (1963: 52-2). We can express our claim with respect to the previous 
symmetries as follows: if a law L holds in a random process, assigning probabi-
lity values to all the possible final states, and that law L holds invariantly under 
certain symmetry transformation T, then the probability values assigned to the 
untransformed process are the same assigned to the transformed process by T. 
This is just another formulation of the probabilistic Curie’s principle. 

4.4 On the measurement problem

So far, we have overpassed the question about the collapse of the wave 
function associated with von Neumann’s projection postulate in processes of 
measurement. In the interaction involved in a measurement process of a quan-
tum system –the interaction between a measured system and measuring appara-
tuses– the wave function in question “collapses” and the system adopts one of the 
states included in the calculated superposition state. However, the relata of the 
measurement processes are complex interactions between quantum systems and 
classical objects, and not the dynamical evolutions of quantum systems. So, it is 
not clear whether the measurement problem in quantum mechanics is relevant 
to our discussion about PCP. 

Ismael considers two kinds of interpretations about the measurement prob-
lem. The standard interpretation, that incorporates the so-called “collapse pos-
tulate”, under which the assignation of a probability to an observable A of a 
system in a state  represents the probability that if one measures the observ-
able A, the system will evolve into an eigenstate of A with eigenvalue a. And an 
interpretation according of which: “Born’s rule is treated as a law of coexistence 
relating partial state descriptions to a probability distribution over fuller state 
descriptions.” (1997: 178). Under this second interpretation, which does not 
assume the collapse postulate, the probability of an eigenvalue a for an observable 
A for a system in a state  means that the system in fact possesses eigenvalue a 
for A. Ismael concludes that in either case “Born’s rule is treated as an indeter-
ministic law which maps the state-description onto a probability distribution 
over state-descriptions.” (idem). If this is so, it seems that we can consider the 
plausibility of PCP apart from the hard measurement problem, and we can also 
maintain that Born’s rule, not von Neumann’s projection postulate, is the law 
which we have regarded with respect to CP in indeterministic systems. 



 471

ÉNDOXA: Series Filosóficas, n.o 46, 2020, pp. 459-475. UNED, Madrid

But there is an additional reason to think of PCP separately from the col-
lapse of wave functions. The sort of transformations on quantum systems which 
are our concern here are not the discontinued transformations involved in the 
measurement interactions, but the transformations that physicists consider as 
symmetry operations such as translation in space, translation in time, reversal 
of time, reflection of space, replacement particles by identical particles, and 
exchange matter-antimatter. With respect to these kinds of transformations T, 
we intend to say that a probabilistic law L is symmetrical under T if and only 
if for all physically possible effects Ei, given a symmetrical physical conditions 
C in an indeterministic system, the probability values of all Ei (with i ≥ 2) are 
invariant under T, which means that the probability values are preserved when 
the indeterministic system is transformed. 

Earman elaborates a quite different view on this point. For him, a mea-
surement process interrupts the deterministic evolution of a quantum system, 
governed by Schrödinger equation, via a “collapse” of the state vector into an 
eigenstate of the observable under measurement −though he points out that it 
is highly controversial the idea that the collapse of the state vector is an objec-
tive physical process (2002: 181 and ft. 11). Such measurement collapse would 
violate his premise (C1) on the deterministic evolution of the quantum system, 
although he separated the question of his concern about the spontaneous sym-
metry breaking from the collapse of wave functions in measurement processes. 
Our indeterministic version of PCP avoids such sort of threat, because we do not 
suppose any description of a deterministic evolution, but descriptions of pos-
sible transitions or transmutations of quantum systems in terms of superposed 
states with assigned probability values −though one could ask what the physical 
status of such superpositions of quantum states is, as Cartwright does (1983). 
Both questions −the physical objectivity of the collapse of the state vector and 
the physical status of the quantum superposed states− are beyond the intended 
scope of this paper.

4.5 Symmetry and principles of conservation 

There is a close relationship between the principles of symmetry and the 
principles of conservation. Beiser express this as follows: “Every symmetry opera-
tion corresponds to something being conserved, though not necessarily in every 
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interaction.”8 (1987: 537). For example, in the Compton scattering effect the 
relevant quantities conserved are momentum under a translation in space and 
energy under a translation in time, in the same way that in the quantum-mecha-
nical phase the electrical charge is the quantity conserved. These cases, which 
involve indeterministic systems, suggest the question about the relationship 
between PCP and the principles of conservation. Nevertheless, as it is known, 
there are important exceptions in certain interactions to the connection between 
symmetry operations and quantities conserved under some transformations, as 
Beiser said. This shows the pertinence of the question. We find with respect to 
this that whenever we deal with processes that are no invariants under a certain 
transformation, PCP does not apply; its scope is restricted to indeterministic 
systems which fulfill the symmetry transformations.

A significant exception is the known violation of space parity. The parity 
designs the behavior of the wave function under an inversion in space, i. e., 
the reflection of spatial coordinates through the origin, replacing x by −x, y by 
−y, and z by −z. That the parity is conserved on some kind of process means 
that the laws of physics are independent of whether a left-handed or a right-
handed coordinated system is used to describe the process. If the sign of the 
wave function does not change under such inversion −i. e., (x, y, z) = ( x, 

y, z)− the parity is even, if it changes −i.e., (x, y, z) = ( x, y, z)− the 
parity is odd. The principle of conservation of parity affirms that a system of 
even parity retains even parity and a system of odd parity retains odd parity: the 
initial parity of an isolated system does not change during whatever events occur 
within it (see Beiser, 1987: 539). Both previous processes fulfill this principle of 
parity; in general, it holds in strong and electromagnetic interactions, but not 
so in some weak interactions. In the process of spontaneous beta decay, a weak 
interaction, the parity is not conserved. Beta disintegration is a nuclear process 
which converts a neutron into a proton ( −) or vice versa ( +), emitting besides 
an electron plus an antineutrino, and a positron plus a neutrino, respectively. 

A simple case where space parity is not conserved refers to the asymmetry 
under reflection of space on weak interactions in which neutrinos and anti-
neutrinos participate.9 The direction of spin of neutrinos is counterclockwise 

8  But it seems that the converse does not hold because, for example, the conservation of the 
baryon number B has not any known symmetry associated.
9  Besides, the symmetry operations of time reversal (when t is replaced by – t) and charge 
conjugation (when Q is replaced by – Q) have exceptions in some weak interactions, where 
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while the direction of spin of antineutrinos is clockwise. The reflection of space 
transformation inverts the direction of spin of both kinds of particles. The spin 
of neutrino looks like the spin of antineutrino in its mirror image, and vice 
versa. This induces so an asymmetry between the directions of spin of each such 
particles and their mirror images. About that Beiser points out: “The neutrino 
has a left-handed spin and the antineutrino a right-handed spin, so that there 
is a clear difference between the mirror image of either particle and the particle 
itself.” (see, idem). Thus, the reflection in space operation violates the parity of 
description of neutrinos and antineutrinos. The initial parity of either sort of 
particles changes under such transformation, whether an even parity or an odd 
parity, and the equations that describe theirs beta disintegration invert its signs. 
It seems that this result is in accordance with Curie’s claim: “The phenomena 
breaks the symmetries of laws”.10 

The former no conservation of space parity entails, e.g., that the initial state 
of a free electron undergoing a random process, with a left-handed spin, and 
the initial state of the same electron under a reflection of space operation, with 
a right-handed spin, are asymmetrical, i. e., SI ≠ R(SI), where SI is the initial 
state of the free electron and R is the inversion of space. This implies, contrary 
to the conclusion of our proof of PCP, that the corresponding probability values 
of the possible final states in the untransformed system and in the transformed 
system are different, i.e., p(SFi) ≠ p(R(SFi)). However, this is consistent with PCP, 
since the assumption about the symmetry of the initial state of the system under 
a given transformation is not fulfilled, and thus the equality of the probabilities 
of its possible final states is not implicated by PCP. 

It seems that when the quantities are conserved the probabilities are preser-
ved, although the contrary does not hold in general; i. e., in processes under an 
asymmetric transformation, which breaks the conservation of a quantity, the 
probabilities associated are not preserved.

 

time parity and charge parity are not conserved, respectively (see Beiser, 1987: 538). 
10  Quoted by Earman (2004: 1231) from Curie (1894: 401).
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5. Conclusion

We have seen that laws of physics hold invariably across an intended domain 
of application and that laws of physics hold invariably under symmetry transfor-
mations. It is the latter claim that is relevant with respect to Curie’s Principle. We 
have tried to maintain a probabilistic formulation of such principle for random 
processes. Our main thesis is that probabilistic laws about such processes, if 
they hold under symmetry transformations on a domain of application, as the 
quantum domain, then they do so salva probabilitas. Hence, on basis of PCP, 
from a symmetry T of the initial state of an indeterministic system we can infer 
the invariance of the probability values assigned by a law to its possible final 
states when the system is transformed by T, granted that the law holds on the 
untransformed system. 
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