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AsstrACT: Curie’s principle expresses an invariant connection between the symme-
try of causes and symmetry of effects in deterministic systems. Here a probabilistic ver-
sion of such principle is proposed and proved for indeterministic systems. The concept
of symmetry in question embraces the invariance of the holding of the laws of physics
under certain transformations. In contrast with Curie’s principle, which involves the
invariance of the effects under symmetry transformations, our probabilistic version
involves invariance of the probabilities that laws assign to physically possible final states
of random processes under symmetry transformations, although with exceptions when
a phenomenon breaks the symmetry in question.
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ResuMmen: El principio de Curie expresa una conexién invariante entre la simetria
de las causas y la de los efectos en sistemas deterministas. Aqui se propone, y se demues-
tra, una versién probabilista de tal principio para sistemas indeterministas. El concepto
de simetrifa en cuestién envuelve la invariancia de la validez de las leyes de la fisica bajo
ciertas transformaciones. En contraste con el principio de Curie, el cual involucra la
invariancia de los efectos bajo transformaciones de simetria, nuestra versién probabilista
involucra la invariancia de las probabilidades que las leyes asignan a los estados finales
fisicamente posibles de procesos aleatorios bajo transformaciones simétricas, aunque
con excepciones cuando un fenémeno rompe la simetria en cuestion.

PALABRAS CLAVE: Trasformacién simétrica, invariancia, asimetria, simetrias rotas,

cantidad conservada.

" Direccién postal: 16 de Septiembre # 57, Ote., Centro histérico, Querétaro, Qro. C. P,
76000, México. E-Malil: jlrolleri@yahoo.com. Profesor investigador de la Facultad de Filosoffa.

ENDOXA: Series Filosdficas, n.° 46, 2020, pp. 459-475. UNED, Madrid



460 Jost Luis ROLLERI

1. Introduction

The principle that Pierre Curie formulated in his Sur la symétrie dans les
phénoménes physiques (1894) has an intended causal character for synchronic
physical systems, included the medium, governed by deterministic laws, where
some feature of a given system could be regarded as the cause of other feature
of the same system simultaneously. This principle contrasts with the view of
deterministic causality formulated by Pierre Simon de Laplace in his famous
Essai philosophique sur les probabilités (1814), where he expressed that view in
diachronic terms for the past, present and future states of the universe ruled by
Newtonian laws. The originality and worth of the principle proposed by Curie
consists in that he explicitly states it in terms of symmetries of both causes and
effects, and invariance properties of deterministic laws. However, in his original
version, Curie’s Principle (CP) is not suitable, at least not directly, to diachronic
systems reigned by dynamic laws.

Chalmers (1970) reformulated CP in a way which becomes appropriate
for dynamic systems, and since then his version is considered as the “received
view” of CP.1 Most philosophers that had written on CP discuss the meaning of
this principle (how it can be interpreted?) and its applications to physical systems
which display symmetrical properties under some groups of transformations (see,
e.g., Chalmers, 1970; Ismael, 1997; Roberts, 2013; Norton, 2016; Castellani
and Ismael, 2016). It is not our intention to discuss the question about the mea-
ning of CP, instead we shall adopt Chalmers’ reformulation. Also, some of those
philosophers have proposed proofs of CP giving some distinct —but possibly
equivalents— versions (Chalmers, 1970; Earman, 2002; Castellani and Ismael,
2016). We will attend these proofs later on. All the previous issues have been
focused, following Curie, on deterministic physical systems. However, Jenann
Ismael (1997) poses questions about the possible application of a reformulation
of CP to indeterministic systems governed by probabilistic laws, and in particu-
lar, quantum systems. He responds affirmatively to both questions (1997: 176).
We agree with him, and so, borrowing some of his key ideas, in this paper we
mainly try to give a probabilistic version of CP, to provide a proof of such version
and, finally, to explore its plausibility for some quantum systems.

! See Castellani and Ismael (2016: 1002).
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2. Invariance and symmetry

We can distinguish between the two following assertions. First, laws of phy-
sics hold invariably across an intended domain of application. Second, laws of
physics hold invariably under symmetry transformations.? These two claims are
related with, but they are independent of, CP. One can find them in books of
physics, e.g., in Feynman et al (1963) and Beiser (1987). The two levels of inva-
riance are indeed different. The first one refers to an invariance of the manner
in which physical systems change in accordance with some law. The second one
refers to a higher invariance, to an invariance of the laws themselves, associated
with the symmetry operations such as translation in space, translation in time,
rotation in a fixed angle, inversion of time, reflection of space, and exchange of
matter-antimatter (charge conjugation). Thus, on the one hand, the relata of
invariance are physical systems and the processes they suffer, that is expressed by
a law of evolution which prescribes the possible changes of state of the systems
allowable by such a law. One the other hand, at a high level of abstraction, the
relata of invariance are laws themselves expressed by principles of symmetry
which state the sort of transformations under which the holding of the laws of
evolution is preserved.

Curie’s principle in his own words: “When certain causes produce certain effects,
the symmetry elements of the causes must be found in their effects” (1894: 312),
asserts something else and stronger than the two former assertions, namely:
the symmetry of the causes is preserved in the effects under symmetry transfor-
mations.” When one converts this principle, as Chalmers does, from synchro-
nic physical situations to diachronic physical systems, one presupposes the two
previous assertions. Indeed, these two claims are assumptions to obtain CP* A

2 Elena Castellani points out the former distinction when she says that “Symmetries can be

attributed to physical states or to physical laws” (2003: 321) and adds that there is a connec-
tion between both sorts of symmetries, linking this distinction with an elucidation of the
meaning of symmetry breaking.

3 It seems that this claim is synthetic in character, not virtually analytical (see Earman, 2002:
178), and that it could be unfulfilled in some cases. The fact that some versions of CP can be
proved in a simple way is due to the premises which are assumed; in particular, to the
assumptions that the state of the system, in a given time, is symmetrical and to the attributed
invariance of deterministic laws.

* We can see this in the proof of CP due to Castellani and Ismael (2016: 1008-1009). The
first former assertion amounts to the assumption about the holding of deterministic dyna-
mics laws, whereas the second former assertion is involved in the assumption that such laws
are invariant under certain symmetry transformation.
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central question is about how we must understand the assertion that causes are
symmetrical, which is the point of start of CP. Chalmers provides a notion of
symmetry transformation which could be key to clarify that: Given a descrip-
tion of a physical system by means of the specification of its magnitudes then a
symmetry transformation for the system is an operation performed on it which
leaves the specification unchanged (cf. 1970: 134-135). Chalmers opts correctly
to speak in a formal mode, in contrast to a material mode one, i.e., instead of
talking directly about physical systems and their states he talks about the descrip-
tions of physical systems and their states in reference to a conceptual framework,
since “the descriptions of a system will always be some abstraction which will
depend on the conceptual framework in which, or the theoretical standpoint
from which, it is viewed, so that, in a sense, a symmetry transformation is a pro-
perty of the description rather than of the physical system itself.” (1970: 135).
In that way, one can say that a cause C is symmetrical under a transformation
T, T(Q), if T'does not change the description of C, i.e., if the description of the
untransformed cause is the same, or equivalent, to the description of the trans-
formed cause. The same applies to the effects: an effect is symmetrical under 7°
if the description of £ is equal, or equivalent, to the description of 7(£), i.e.,
the effect transformed by 7. The converse of CP is the claim that if under 7,
the specification of the effect £ is not equal to that of 7(£) then the associated
cause C'is different from 7(C). What does mean that a cause C is asymmetrical
under certain transformation 7'is a controversial issue related with the so-called
symmetry breaking, which we overlook here.

3. Curie’s principle for deterministic systems

The proof of Curie’s Principle due to Castellani and Ismael (2015) is quite
different from the one that we provide below. They follow Chalmers’ (1970)
approach to the issue consisting of extending CP to dynamic systems ruled by
deterministic laws, and demonstrating its validity and applications. Indeed, they
reproduce formally the brief proof via reduction to absurd due to Chalmers’
reformulation of CP in such a way to make possible its applications to the evo-
lution of physical systems in terms of causes and effects, providing a deductive
argument. The conclusion of such argument is the claim about the symmetry of
the effects £ under a symmetrical transformation 7, i. e., 7(£) = E. The premise
of the argument is a general formulation of a deterministic law with the form:
E = f{C), where fis a function equivalent to a set of ordered pairs of causes and
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effects (C, E), which is known if the laws of nature are known. The proof is based

on invariance properties of deterministic laws as follows:

E=f0C) Deterministic law

T (E) = T(RO)) Apply T

T(E)=AT(O) T -symmetry of the law, i.e., Tf= fT’
T'(E) =f0) T -symmetry of the cause, i.c., 7(C) = C
T(E)=E Again by Determinism

This proof links symmetry transformations with deterministic physical
laws.” It seems as a proof of the symmetry of such laws under certain transfor-
mations, according to Curie’s thesis: “The symmetries are in the laws of the
phenomena not in the phenomena themselves”.® Nevertheless, it is not clear that
the previous deduction is a proof of CP. According to Castellani and Ismael it
amounts to a demonstration of Chalmers’ claim: CP follows from the invariance
properties of physical laws if these are deterministic. It may be closer to Curie’s
Principle, as formulated before: “When certain causes produce certain effects, the
elements of symmetry of the causes must be founded in the effects produced’, to
say that for synchronic systems the symmetry of the effects under a transforma-
tion 7 follows from the symmetry of the causes under the transformation 7 and
the invariance properties of the laws involved if these latter are deterministic.

The proof of the latter formulation of CP for diachronic systems is as follows:

M0 =C T -symmetry of the causes

AT(C) = AO) Apply the function f

T(QO) = O T -symmetry of the law, i.e., f7'= Tf
IE)=E By the deterministic law

> It is worth to note that in the former deduction the equation E = fC) is used both as
premise and as a rule of inference (it is similar to use the tautology (P — Q) & (Q — R) —
(P — R) as our main premise and later on apply it as a rule to infer the conclusion).

¢ Quoted by Earman (2004: 1231) from Curie (1894: 401).
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Thus, we can think of Curie’s Principle for dynamic systems in the following
terms: If the causes are symmetrical and the laws are symmetrical then the effects
are symmetrical, granted that the laws involved are deterministic.

There are two possible exceptions to CP on deterministic systems. About
the 7'-symmetry of £ When a function fis not invariant under some 7"it could
mean that there is a phenomenon that breaks the symmetry of the correspond-
ing law under such transformation 7, that is, the law does not hold under the
transformation 7 of the physical system involved (this does not means that the
law that provides the function f'does not hold at all, but that it does not hold
when the physical system involved is transformed by the operation 7). And in
respect of the 7 -symmetry of the causes: If the effects are not symmetrical (i.e.,
they are not invariant under the operation 7), then there is a hidden asymmetry
in the causes, by the converse of Curie’s Principle.

Besides, the principle does not hold when the law and the physical system
involved are not deterministic, that is, when the causes are 7-symmetrical and
the law is 7-symmetrical, but in both the untransformed system and the trans-
formed system one obtains alternatively two, or more, different and mutual
excluding effects. Can we obtain a version of Curie’s principle for such inde-
terministic system? The point about this question consists in elucidating the
role principles of symmetry play on indeterministic systems in connection with
probabilistic laws.

Earman (2002) provides also a formal proof of CP which is in some respect
equivalent to the prior proof due to Castellani and Ismael. Firstly, he formulated
such a principle as a conditional statement and, secondly, he offered the formal
proof for a Schrodinger dynamic. The former is as follows: /f (CP1) the laws
of motion/field equations governing the system are deterministic, and (CP2)
the laws of motion/field equations governing the system are invariant under a
symmetry transformation, and (CP3) the initial state of the system is invariant
under such symmetry, then (CP4) the final state of the system is also invariant
under such symmetry (2002: 176). Earman comments quite right that if an
asymmetry appears in a physical system, it is due to one (or more) of three fac-
tors which correspond to the failure of one (or more) premises: either the initial
state is asymmetric, or the laws are not symmetric, or determinism does not hold
(2004: 177). Earman’s version of CP proof for a Schrodinger dynamics resides
in considering the “determinism” of physical systems as the evolution from an
initial state @0 at time #0 to a final state w1 at time 71 given by an automorphism
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a of the algebra of observables in a Hilbert space, which amounts to premise
(CP1) in the sense that it permits to say that for any pairs of evolutions allowed
by the laws involved, sameness of initial states implies sameness of final states.
Besides, if we suppose that o is invariant under a transformation 0 (CP2), and if
the initial state ®0 is O-invariant (CP3), then the evolved state ®1:= a(®0) is also
O-invariant (see proposition 2 in the appendix for his formal proof). He deems
that, as in the classical case, this formulation of CP for Schrodinger dynamics
is also virtually analytic (2002: 188). Nevertheless, Earman is not concerned
about how CP could be formulated, and proved, for indeterministic systems
where we cannot suppose a premise like (CP1) for the evolution of quantum
systems.7 What is missing is to express CP for systems governed by Born’s rule
or Born’s probabilistic version of Schrédinger equation. We will try to provide
such probabilistic formulation below.

4. Curie’s principle for indeterministic systems

4.1 Probabilistic Curie’s Principle

Let us now explore how could Curie’s Principle be for indeterministic systems
and, hence, for probabilistic laws. Chalmers says that “The laws of a deterministic
theory enable the effect, £, to be derived from the cause, C. We can write £ =
AC), where ‘f denotes a function which is known if the laws are known.” (1970:
140). Similarly, we can say that the laws of an indeterministic theory enable
the probability distribution of physically possible final states, S 4» to be derived
from (a description of) the initial state, SI. We can write L(S]) = p(§Fi) where
‘L’ designs a probabilistic law and ‘p’ denotes a probability function which is
known if the law Z is known. Or, as Ismael says, a probabilistic law maps state-
descriptions of indeterministic systems onto probability functions which define
a distribution of probability over the set of physically possible state descriptions
(see 1997: 176-177).

An appropriate notion of symmetry for the laws of an indeterministic theory
could be as follow: We say that a probabilistic law L is symmetrical under a

7 'The main concern of Earman in that paper consists in the topic of spontaneous symmetry
breaking in relation to Curie’s Principle.

ENDOXA: Series Filosdficas, n.° 46, 2020, pp. 459-475. UNED, Madrid



466 Jost Luis ROLLERI

transformation 7"if L(7(S7,)) = T (L(SL,)), which allows to prove, as we will see,
that the probability values that L assigns to all physically possible final states SFi,
given the initial state S7, are invariant under 7, i. ., for all SFi in {SF}, p(SFi) =
p(T(SF7)). The involved key idea consists in that the probability of the evolution
of an untransformed system to a certain final state is equal to the probability of
the evolution of the transformed system by 7" to the same final state. Perhaps, we
can say that a probabilistic law L is asymmetrical under a transformation 7, if for
some possible final state SFj, p(SFj) = p(T(SF})), i.e., the probability value of
SFj is not invariant under 7'—however, the issue about the symmetry breaking
is a controversial question and it goes beyond the scope of this paper (see, e.g.,
Earman, 2002 and Castellani, 2003).

Suppose that L is a probabilistic nomic statement such that for any pair <S7,
{SF}>, which represents an indeterministic process in a physical system S (the
evolution of S from the initial state S7 to one of its final states in {SF}), L(S]) =
P(SFi), for all <SI, SFi> with i = 2. A probabilistic version of Curie’s Principle
(PCP) is the following: If the initial state of a (kind of) indeterministic system
is symmetrical under the transformation 7 and the probabilistic law L is sym-
metrical under 7, then the probabilities of the physically possible final states are
symmetrical under 7.

So let us prove the following formal enunciation of Curie’s Principle for
indeterministic systems ruled by probabilistic laws: If ST = T (SI) and L(T (S1))
= T (L(S])) then p(SFi) = p(T(SFi)), given that L(SI) = p(SFi), for every SFi in
the set {SF} of the physically possible final states, with i > 2.

Proof. For all SFi in {SF}:

(1) SI= T(SI) symmetry of the initial state under T
(2) L(T(SD)) = T(L(SI)) symmetry of law Z under T

(3) L(SD) = T(L(SI)) from (2) by (1)

(4) L(SI) = L(T(SD)) from (3) by (2)

(5) p(SFi) = p(T(SFi)) from (4) by the probabilistic law L
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Thus, the probability values of the physically possible final states, which the
probabilistic law L assigns to them, are invariant under the symmetry operation
7 'This follows from the symmetry of the initial states under 7"and the symmetry
of L under 7, as it is required.

The left side of the former proof amounts to whenever one has an inde-
terministic system in a certain initial state and applies a probabilistic law to it,
one obtains a probability distribution to its physical possible final states. We
can think of Born’s version of Schrodinger equation as an exemplar law of this,
which assigns a probability value to every superposed states. The right side of that
proof says that whenever one has an indeterministic system whose initial state is
symmetrical under a transformation 7 and one applies to it a probabilistic law
which is symmetrical by 7, then one obtains a probability distribution of the
physically possible final states of the transformed system. This PCP claims that
Born’s rule, or the nomic probabilistic equation appropriate for the quantum sys-
tem in consideration, applies to the untransformed system and the transformed
system as well: if Born’s rule holds on the untransformed system then it holds
also on the transformed system by 7.

We can consider as examples of such transformation 7 the symmetry opera-
tions of interchange of particles by identical particles, translation in space and in
time, matter-antimatter (charge conjugation), and inversion of space -although
the two last in some nuclear interactions do not conserve the quantity associated,
i.e., charge parity C and space parity P, respectively.

There are some possible counter examples of PCP in indeterministic systems.
Suppose that for some S,7, p(S,j) # p(T(S,))). Then, premise (1) or premise (2)
of the former deductions are not fulfilled. If (1) is not satisfied —the initial state
is not 7-symmetrical after all—, then there is a hidden asymmetry in the initial
state of the system. For quantum systems one could say that there is a hidden
local variable, perhaps introduced by the transformation 7. If (2) is not satisfied
—the law L is not 7-symmetrical after all— means that the holding of the law L
is not invariant under the transformation 7, which involves the violation of the
supposed symmetry of the law L. In other words, if one transforms the system
according to the supposed symmetry operation 7, the law L does not apply any
more to the transformed system. In such case, there is a phenomenon that breaks
the invariance of the holding of the law L. This is the case on weak interactions
under reflection of space in beta decay, known as the violation of space parity P
(see Penrose, 2004: 25.3).
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4.2 Salva Probabilitas

As we have seen, the probabilistic version of Curie’s principle for indeter-
ministic systems is quite different from CP in that the invariance asserted is not
about the physical effects, but about the probabilities of the physically possi-
ble effects. We can say that PCP expresses that the symmetry transformations
applies to physical laws salva probabilitas. For that reason, it is not Schrédinger
equation our focus of concern, but Bohr’s rule instead, as far as one can define
a probability distribution over the set of superposed states for a given system in
evolution through it.

Recall that relative to the conceptual framework of standard quantum
mechanics, for any event x in a quantum system Born’s rule equals the probabi-
lity of x with the absolute square of a wave function Y(x), i.e., p(x) = [{(x)|% In
accordance with the superposition principle -if an individual quantum system S
could be in a state represented by |b,) and also in a state represented by |b,) then
any linear combination [{s) = ¢,|b,) + c’|b,) represents a state of S (with ¢ and ¢,
complex numbers)-, we can obtain a probability distribution when the function
U expands to a superposition state X.jn |bj), i. e., we obtain [P(x)I* = Xjn Ic|b)I%
where for each individual state |b, ), component of the superposition, |c,|b,)I?
represents its probability value. Thus, under Born’s probabilistic interpretation
of Schrodinger’s wave function, the state descriptions of quantum systems are
given in terms of state superpositions with associated probability distributions,
not in terms of deterministic equations, which assign to every possible event x,

a probability that it will occur: p(x) = [P (x)]*.

4.3 Quantum processes and PCP

Again, the question of our concern here about quantum indeterministic
processes is whether symmetry operations preserves the probabilities values from
the untransformed system to the transformed system, i.e., if symmetry transfor-
mations hold salva probabilitas.

Earman maintains that: “It would be a worthwhile project to develop a sta-
tistical form of CP that could apply in cases where strict determinism fails but
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statistical determinism holds (2002: 180). It seems that he considers that a des-
cription of the evolution of a quantum system by means of Schrédinger equation
corresponds to a deterministic evolution. However, in order to give account of
genuine indeterministic processes (random state changes of quantum systems)
in standard quantum theory it would be better to apply Born’s rule to dynamics
equations to obtain a superposition of the physically possible final states from
an initial state. Such superpositions represent the random character of quantum
processes since they assign probabilities to the physically possible final states
of the developed systems. And, of course, it is a matter of physics that if some
kind of process (e.g., Compton scattering effect) has a random character and a
quantum equation assigns transition probabilities to the alternative physically
possible final states, it assigns the same transition probabilities to every instance

of that kind.

The former is just an illustrative case of a kind of indeterministic process.
In general, there are quantum equations that hold invariantly in indeterministic
processes which involve gravitational, electromagnetic, strong, and weak interac-
tions. All this is just physics. Our question here with respect to PCP is whether
the probability distributions that quantum equations assign to quantum random
processes are preserved under symmetry transformations. In general, the answer
is affirmative. Feynman indicates a case which illustrates the point:

If v is the amplitude for some process or other, we know that the abso-
lute square of  is the probability that the process will occur. Now if some-
one else were to make his calculation not with this v, but with a y” which
differs merely by a change in phase (let A be some constant, and multiply
e“times the old ), the absolute square of y’, which is the probability of
the event, is then equal to the absolute square of y: y" = ye'®; [y'|? = [yl
Therefore the physical laws are unchanged if the phase of the wave function
is shifted by an arbitrary constant. (1963: 52-3).

The former is the quantum mechanical phase symmetry which shows our
claim: laws of quantum physics do not change under symmetry transformation,
which entails that the probability distributions that these laws assign to diverse
kinds of quantum processes are preserved under such transformations. We can
add to the prior symmetry transformation the symmetry operations that Feyn-
man indicates under which various physical phenomena remain invariant: trans-
lation in space, translation in time, rotation in space, uniform velocity in straight
line (Lorentz transformation), reversal of time, reflection of space, interchange
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of identical atoms or identical particles, and matter-antimatter (charge conju-
gation). (1963: 52-2). We can express our claim with respect to the previous
symmetries as follows: if a law Z holds in a random process, assigning probabi-
lity values to all the possible final states, and that law L holds invariantly under
certain symmetry transformation 7, then the probability values assigned to the
untransformed process are the same assigned to the transformed process by 7.
This is just another formulation of the probabilistic Curie’s principle.

4.4 On the measurement problem

So far, we have overpassed the question about the collapse of the wave
function associated with von Neumann’s projection postulate in processes of
measurement. In the interaction involved in a measurement process of a quan-
tum system —the interaction between a measured system and measuring appara-
tuses— the wave function in question “collapses” and the system adopts one of the
states included in the calculated superposition state. However, the relata of the
measurement processes are complex interactions between quantum systems and
classical objects, and not the dynamical evolutions of quantum systems. So, it is
not clear whether the measurement problem in quantum mechanics is relevant
to our discussion about PCP.

Ismael considers two kinds of interpretations about the measurement prob-
lem. The standard interpretation, that incorporates the so-called “collapse pos-
tulate”, under which the assignation of a probability to an observable A of a
system in a state | represents the probability that if one measures the observ-
able A, the system will evolve into an eigenstate of A with eigenvalue a. And an
interpretation according of which: “Born’s rule is treated as a law of coexistence
relating partial state descriptions to a probability distribution over fuller state
descriptions.” (1997: 178). Under this second interpretation, which does not
assume the collapse postulate, the probability of an eigenvalue a for an observable
A for a system in a state P means that the system in fact possesses eigenvalue a
for A. Ismael concludes that in either case “Born’s rule is treated as an indeter-
ministic law which maps the state-description onto a probability distribution
over state-descriptions.” (idem). If this is so, it seems that we can consider the
plausibility of PCP apart from the hard measurement problem, and we can also
maintain that Born’s rule, not von Neumann’s projection postulate, is the law
which we have regarded with respect to CP in indeterministic systems.
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But there is an additional reason to think of PCP separately from the col-
lapse of wave functions. The sort of transformations on quantum systems which
are our concern here are not the discontinued transformations involved in the
measurement interactions, but the transformations that physicists consider as
symmetry operations such as translation in space, translation in time, reversal
of time, reflection of space, replacement particles by identical particles, and
exchange matter-antimatter. With respect to these kinds of transformations 7,
we intend to say that a probabilistic law L is symmetrical under 7"if and only
if for all physically possible effects E, given a symmetrical physical conditions
C in an indeterministic system, the probability values of all £ (with 7 > 2) are
invariant under 7, which means that the probability values are preserved when
the indeterministic system is transformed.

Earman elaborates a quite different view on this point. For him, a mea-
surement process interrupts the deterministic evolution of a quantum system,
governed by Schrodinger equation, via a “collapse” of the state vector into an
eigenstate of the observable under measurement -though he points out that it
is highly controversial the idea that the collapse of the state vector is an objec-
tive physical process (2002: 181 and ft. 11). Such measurement collapse would
violate his premise (C1) on the deterministic evolution of the quantum system,
although he separated the question of his concern about the spontaneous sym-
metry breaking from the collapse of wave functions in measurement processes.
Our indeterministic version of PCP avoids such sort of threat, because we do not
suppose any description of a deterministic evolution, but descriptions of pos-
sible transitions or transmutations of quantum systems in terms of superposed
states with assigned probability values ~though one could ask what the physical
status of such superpositions of quantum states is, as Cartwright does (1983).
Both questions ~the physical objectivity of the collapse of the state vector and
the physical status of the quantum superposed states— are beyond the intended
scope of this paper.

4.5 Symmetry and principles of conservation

There is a close relationship between the principles of symmetry and the
principles of conservation. Beiser express this as follows: “Every symmetry opera-
tion corresponds to something being conserved, though not necessarily in every
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interaction.”® (1987: 537). For example, in the Compton scattering effect the
relevant quantities conserved are momentum under a translation in space and
energy under a translation in time, in the same way that in the quantum-mecha-
nical phase the electrical charge is the quantity conserved. These cases, which
involve indeterministic systems, suggest the question about the relationship
between PCP and the principles of conservation. Nevertheless, as it is known,
there are important exceptions in certain interactions to the connection between
symmetry operations and quantities conserved under some transformations, as
Beiser said. This shows the pertinence of the question. We find with respect to
this that whenever we deal with processes that are no invariants under a certain
transformation, PCP does not apply; its scope is restricted to indeterministic
systems which fulfill the symmetry transformations.

A significant exception is the known violation of space parity. The parity
designs the behavior of the wave function under an inversion in space, i. e.,
the reflection of spatial coordinates through the origin, replacing x by -x, y by
-y, and z by -z. That the parity is conserved on some kind of process means
that the laws of physics are independent of whether a left-handed or a right-
handed coordinated system is used to describe the process. If the sign of the
wave function J does not change under such inversion -i. e., P(x, y, z) = P(—x,
—y, —z)- the parity is even, if it changes -i.e., Y(x, y, z) = —P(—x, —y, —2z)- the
parity is odd. The principle of conservation of parity affirms that a system of
even parity retains even parity and a system of odd parity retains odd parity: the
initial parity of an isolated system does not change during whatever events occur
within it (see Beiser, 1987: 539). Both previous processes fulfill this principle of
parity; in general, it holds in strong and electromagnetic interactions, but not
so in some weak interactions. In the process of spontaneous beta decay, a weak
interaction, the parity is not conserved. Beta disintegration is a nuclear process
which converts a neutron into a proton (-) or vice versa ($+), emitting besides
an electron plus an antineutrino, and a positron plus a neutrino, respectively.

A simple case where space parity is not conserved refers to the asymmetry
under reflection of space on weak interactions in which neutrinos and anti-
neutrinos participate.9 The direction of spin of neutrinos is counterclockwise

8 But it seems that the converse does not hold because, for example, the conservation of the

baryon number B has not any known symmetry associated.
7 Besides, the symmetry operations of time reversal (when ¢ is replaced by — ) and charge
conjugation (when Q is replaced by — Q) have exceptions in some weak interactions, where
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while the direction of spin of antineutrinos is clockwise. The reflection of space
transformation inverts the direction of spin of both kinds of particles. The spin
of neutrino looks like the spin of antineutrino in its mirror image, and vice
versa. This induces so an asymmetry between the directions of spin of each such
particles and their mirror images. About that Beiser points out: “The neutrino
has a left-handed spin and the antineutrino a right-handed spin, so that there
is a clear difference between the mirror image of either particle and the particle
itselt.” (see, idem). Thus, the reflection in space operation violates the parity of
description of neutrinos and antineutrinos. The initial parity of either sort of
particles changes under such transformation, whether an even parity or an odd
parity, and the equations that describe theirs beta disintegration invert its signs.
It seems that this result is in accordance with Curie’s claim: “The phenomena
breaks the symmetries of laws”.10

The former no conservation of space parity entails, e.g., that the initial state
of a free electron undergoing a random process, with a left-handed spin, and
the initial state of the same electron under a reflection of space operation, with
a right-handed spin, are asymmetrical, i. e., S/ = R(S), where S/ is the initial
state of the free electron and R is the inversion of space. This implies, contrary
to the conclusion of our proof of PCP, that the corresponding probability values
of the possible final states in the untransformed system and in the transformed
system are different, i.e., p(S,) = p(R(S,)). However, this is consistent with PCP,
since the assumption about the symmetry of the initial state of the system under
a given transformation is not fulfilled, and thus the equality of the probabilities
of its possible final states is not implicated by PCP.

It seems that when the quantities are conserved the probabilities are preser-
ved, although the contrary does not hold in general; i. e., in processes under an
asymmetric transformation, which breaks the conservation of a quantity, the
probabilities associated are not preserved.

time parity and charge parity are not conserved, respectively (see Beiser, 1987: 538).
% Quoted by Earman (2004: 1231) from Curie (1894: 401).
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5. Conclusion

We have seen that laws of physics hold invariably across an intended domain
of application and that laws of physics hold invariably under symmetry transfor-
mations. It is the latter claim that is relevant with respect to Curie’s Principle. We
have tried to maintain a probabilistic formulation of such principle for random
processes. Our main thesis is that probabilistic laws about such processes, if
they hold under symmetry transformations on a domain of application, as the
quantum domain, then they do so salva probabilitas. Hence, on basis of PCP,
from a symmetry 7 of the initial state of an indeterministic system we can infer
the invariance of the probability values assigned by a law to its possible final
states when the system is transformed by 7, granted that the law holds on the
untransformed system.
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