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Resumen — En el presente trabajo se llevara a cabo la sintesis Optima de mecanismos doble cuatro barras, me-
diante el uso de coordenadas naturales iniciales de algunos pares cinematicos. Este método novedoso se destaca
por mantener la configuracion inicial del mecanismo a lo largo de su rango de movimiento, lo que representa una
ventaja sobre los métodos tradicionales, que no proporcionan esta informacion y se basan en las dimensiones que
generalmente corresponden a las longitudes de los eslabones, complicando atin mas el proceso de ensamblaje del
mecanismo de direccion. Se aplican las coordenadas cartesianas de pares cinematicos en posicion neutra como
variables de disefio para un mecanismo de direccion de doble cuatro barras. Se aplicard un algoritmo para resolver
las ecuaciones de cinematica y determinar los angulos 6ptimos, utilizando el software de codigo abierto Octave,
lo que ademas permitira realizar varias simulaciones y encontrar diversas soluciones de optimizacion del meca-
nismo de direccion. El enfoque de sintesis 0ptima ha sido aplicado con éxito a mecanismos de direccion de palanca
central. Aunque este método resulto eficiente en la busqueda soluciones optimas, es importante destacar que todas
las soluciones cumplen la con la condicion ideal de Ackermann aproximadamente; sin embargo, no todas las
optimizaciones encontradas son aplicables, ya que exceden los dngulos de transmision. Por lo tanto, su imple-
mentacion dependera de la aplicacion o de los pardmetros especificos del vehiculo. Se concluye que la implemen-
tacion de coordenadas cartesianas de pares cinematicos en posicion neutral, como variables de disefio para un
mecanismo de direccion de doble cuatro barras fue exitosa, debido a que todas las optimizaciones dieron conver-
gencia de la funcion objetivo de manera rapida y el cumplimiento aproximado de la condicion de Ackermann.

Palabras clave — Mecanismos direccion, mecanismo doble cuatro-barras, sintesis dimensional 6ptima, coorde-
nadas naturales.

Abstract — In the present work, the optimal synthesis of double four-bar mechanisms will be carried out by using
the initial natural coordinates of some kinematic pairs. This novel method stands out for maintaining the initial
configuration of the mechanism throughout its range of motion, which represents an advantage over traditional
methods, which do not provide this information and are based on dimensions that generally correspond to the
lengths of the links, further complicating the assembly process of the steering mechanism. Cartesian coordinates
of kinematic pairs in neutral position are applied as design variables for a double four-bar steering mechanism.
An algorithm for solving the kinematics equations and determining the optimal angles will be applied using the
open source software Octave, which will also allow several simulations to be performed and various optimization
solutions of the steering mechanism to be found. The optimal synthesis approach has been successfully applied
to center lever steering mechanisms. Although this method proved to be efficient in finding optimal solutions, it
is important to note that all solutions meet the Ackermann ideal condition approximately; however, not all opti-
mizations found are applicable, since they exceed the transmission angles. Therefore, their implementation will
depend on the application or specific vehicle parameters. It is concluded that the implementation of Cartesian
coordinates of kinematic pairs in neutral position as design variables for a double four-bar steering mechanism
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was successful, since all the optimizations gave convergence of the objective function in a fast way and approxi-
mate fulfillment of Ackermann's condition.

Keywords — Steering mechanisms, double four-bar mechanism, optimal dimensional synthesis, Natural coordi-
nates.

1. INTRODUCCION

En el disefio de mecanismos de direccion, uno de los desafios fundamentales es lograr una sintesis di-
mensional que optimice el rendimiento y la precision del sistema. La optimizacion dimensional de los me-
canismos de direccion se ha investigado extensamente a través de diferentes enfoques, siendo uno de los
mas destacados el uso de coordenadas naturales. Las coordenadas naturales permiten una representacion
mas directa de las relaciones geométricas y cinematicas del mecanismo, lo cual es crucial para su disefo.
Segun algunos estudios previos, el uso de este enfoque puede reducir significativamente los errores de
alineacion en los mecanismos de direccion [1]. La sintesis dimensional 6ptima, como se ha demostrado en
varios estudios, no solo mejora la precision, sino también la facilidad de manufactura de los mecanismos.

Por otro lado, varios estudios han explorado el uso de métodos de optimizacion matematica para la sin-
tesis de mecanismos de direccion y la aplicacion de algoritmos evolutivos ha mostrado una mejora signifi-
cativa en los resultados obtenidos con métodos clasicos de sintesis dimensional [2]. Asimismo, otros estu-
dios de optimizacion utilizando coordenadas naturales ha facilitado el modelado cinemaético al evitar el uso
de funciones trascendentales. El problema de optimizacion se resuelve mediante un algoritmo genético con
codificacion continua, evitando el calculo de derivadas altamente complejas [3]. A medida que la compu-
tacion se ha vuelto mas poderosa, la integracion de técnicas de inteligencia artificial ha ganado relevancia
en la optimizacion dimensional de estos mecanismos como las redes neuronales han sido aplicadas para
predecir las mejores configuraciones dimensionales, abriendo nuevas alternativas para la automatizacion
del disefio de mecanismos [4]. A pesar de los avances mencionados, existen ain desafios significativos en
la implementacion practica de estos enfoques, especialmente en la industria automotriz, donde los requisitos
de precision y confiabilidad son extremadamente altos [5]. La necesidad de perfeccionar la sintesis dimen-
sional de los mecanismos de direccion es cada vez mas urgente, lo que ha impulsado la investigacion en
nuevas metodologias.

En este contexto, el presente articulo propone un nuevo enfoque para la sintesis dimensional de mecanis-
mos de direccion basados en coordenadas naturales. El método que se pretende implementar se destaca
especialmente por permitir el conocimiento de la configuracion inicial del mecanismo, asegurando que esta
se mantenga constante a lo largo de todo el rango de movimiento [6]. Esto representa una ventaja signifi-
cativa en comparacion con métodos tradicionales, los cuales se centran en calcular las longitudes de los
eslabones y, como consecuencia, no proporcionan informacion sobre la configuracion inicial. La ausencia
de este dato critico puede complicar el proceso de ensamblaje del mecanismo, ya que frecuentemente exis-
ten varias maneras de llevar a cabo esta tarea, lo que se traduce en un desafio adicional [7].

Esta investigacion tiene como objetivo explorar el método de coordenadas naturales en el disefio de me-
canismos de direccion de doble cuatro barras, aplicando un algoritmo para determinar los d&ngulos 6ptimos
y validando los resultados mediante un modelado en Octave. Se presentaran los resultados obtenidos junto
con su validacion grafica. Se mostraran las optimizaciones encontradas para el mecanismo, donde se logro
una convergencia total de la funcion objetivo y de la condicion ideal de Ackermann. Este enfoque de sintesis
optima ha sido probado con éxito para un mecanismo de palanca central y se espera que sea aplicado pos-
teriormente a mecanismos de cuatro barras y de pifion y cremallera, ya que este método se ofrece como una
nueva alternativa mucho mas simple que los métodos tradicionales usados.

En la siguiente seccion 2, se inicia con la seleccion de variables. En el apartado 3, se lleva a cabo el
analisis cinematico, donde se formulan y detallan las ecuaciones de restriccion del mecanismo de direccion
de doble cuatro barras. En el cuarto apartado, se selecciona el método para resolver las ecuaciones de res-
triccion, se analiza el error de sintesis y se formula el problema de optimizacion. A continuacion, se imple-
mentan las ecuaciones obtenidas en Octave. Finalmente, se presentaran los resultados de las optimizaciones
encontradas para el mecanismo de direccion doble-cuatro barras.
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2. SELECCION DE VARIABLES DEL MECANISMO DE DIRECCION DOBLE-CUATRO
BARRAS

Se inicia con la identificacion de variables de disefio las cuales se ubican sobre los pares cinematicos del
mecanismo. Cabe resaltar que solo son necesario una parte de las coordenadas de los pares puesto que el

mecanismo de direccion es simétrico en la posicion neutral. Los puntos identificados son p!, pj y el punto

fijo p,. Estos pueden observarse en la Figura 1, junto con los demas puntos del mecanismo de direccion
doble-cuatro barras.

Variables de disefio T u

A

Puntos espejos

w !
\P‘J o~ Eje de simetria

Fig. 1. Mecanismo de direccion doble-cuatro barras modelado en coordenadas naturales.

El vector de variables de disefio Z para el mecanismo de direccion doble-doble cuatro barras que esta
dado por la ecuacion (1),

0

T
z=[x) W X ¥ x, ] (1)

0 0 0 .0 0 0
donde M y M son las coordenadas del punto P ,x2y Y2 son las coordenadas del punto p2,xAy Vi son las
coordenadas del punto fijo 4 . Cabe mencionar que el subindice cero indica que son las coordenadas del
mecanismo de direccion en la posicion neutral. Es fundamental identificar los puntos espejo en la posicion
neutral del mecanismo, ya que esta informacién sirve como una estimacion preliminar para resolver las

0 0 0
ecuaciones de restriccion asociadas al sistema. En el presente caso, los puntos espejo son p4, Ps , Ps y Py
. La identificacion precisa de estos puntos permite establecer las condiciones iniciales del mecanismo y
facilita la formulacion de las restricciones de la que depende estos puntos y que en palabras mas simples
son la distancias en la que se encuentran ubicados cada punto del mecanismo de direccion doble-cuatro
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barras. A continuacion, se describen las ecuaciones que se forman teniendo en cuenta la distancia de cada
punto:

p; =pA+%(p2—pA) )
P, =P, +M(p,—p,) (3)
p. =p,+M(p,—p}) (4)
p!=p,+M(p,-p)) (5)
p; =p,+M(p,-p)) (6)

donde: pg ,pgy pg representan los puntos espejo del mecanismo, P, es un punto fijo y 1)30 es un punto en

la posicion inicial del mecanismo. mientras que P, corresponde al punto que se encuentra sobre el eje de

simetria mostrado en la Fig. 1. Ademas, M es la matriz que describe la transformacion de los puntos espejo
en relacion con dicho eje de simetria mostrada mas adelante en la Ecuacion (7). Esta matriz juega un papel
crucial en la formulacién de las ecuaciones que vinculan los puntos del mecanismo en su configuracion
inicial.

A continuacion, se define La matriz de espejo M, mostrada en la siguiente ecuacion,

1-24 =2
M — /le /’lx/’ly (7)

2,4, 1=241,

donde: 44y p, son los componentes del vector unitario que define el eje de simetria.

3. ANALISIS CINEMATICO

El analisis cinematico comienza con la colocacion del mecanismo de direccion en una posicion inicial
arbitraria, tal como se ilustra en la Fig. 2. Para llevar a cabo este analisis, se emplean las coordenadas
naturales, que permiten una representacion mas sencilla y adecuada del movimiento en el espacio. En este
contexto, el punto de interés se define en funcion del angulo de direccion de la rueda interior, el cual se
expresa mediante la ecuacion (8). Este angulo es crucial para describir el comportamiento del sistema, ya
que influye directamente en la trayectoria seguida por el vehiculo. A partir de esta configuracion inicial, se
realiza un seguimiento detallado de las relaciones geométricas entre los distintos componentes del meca-
nismo de direccion, con el objetivo de obtener una comprension mas precisa de su funcionamiento cinema-
tico. De esta manera, el analisis no solo permite predecir los movimientos de las ruedas, sino también op-
timizar el disefio del sistema para mejorar la maniobrabilidad del vehiculo. Usando las coordenadas natu-

rales entonces, el punto P, se define en funcion del angulo de direccion de la rueda interior tal como se

muestra en la ecuacion (8)

x, | |coss, —sind, || x/ ®

: 0
X, sino, coso, "
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0
donde 'y M 5on las coordenadas del punto P
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Fig. 2. Mecanismo de direccion doble-cuatro barras posicionado de forma arbitraria.

A continuacion, se define el vector de coordenadas naturales q ,el cual estd formado por las coordenadas

naturales de los puntos P,, P,, P,, P, y P,. Que esta dado como muestra en la ecuacion (9),

T
q=[x2 Yo Xy V3 X V4 X5 Vs X yé] )
El vector de restricciones cinematicas que se definen dentro de los limites inferior y superior de las va-
riables de disefio. Para este caso corresponde a 10 restricciones, 6 de distancia entre los enlaces BP,, P,P,
, BP,,P,P,, PP, P,P.y 4 restricciones de puntos alineados en los enlaces BPP,y PP, P, . A conti-

nuacion, se detallaran algunos enlaces y pares que se forman para el mecanismo en cuestion, con sus coor-
denadas naturales. Cabe resaltar que no se mostraran todos, debido a la simetria y que el procedimiento es
el mismo; solo cambian sus coordenadas y ademas se mostrara un enlace particular que se forma en la Fig.

3(c):
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I\:%

(22, y2)
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(x1,91)

(b) (©)

Fig. 3. Detalles de los enlaces particulares que forman para el mecanismo de direccion doble-cuatro barras.

Para el enlace F,F, Fig. 3(a) No se colocan ecuaciones de restricciones debido a que este punto es cono-

. PP, . . o . . d
cido. Pero en el enlace “!" 2mostrado en la Fig. 3(b), las ecuaciones de restricciones de distancia 772
quedan de la siguiente como se muestra en la siguiente ecuacion(10),

I, T, —d, =0 (10)
donde:r,, es el vector desde el punto B, al punto P, y d,, es la distancia del vector desde el punto A, al
P.

Aplicando la ecuacion (10), entonces la ecuacion de restriccion queda de la siguiente forma la siguiente
forma obtenemos la ecuacion (11).

2 2
(2, =x,) (x5, = x,)+ (3 =) (3, —yl)—[(xg —x )+ -7) } (11)
operando la Ecuacion(11), queda como resultado la ecuacion (12). que podemos observar a continuacion:
(xz_x1)2+(yz_y1)2_[(xg_xlo)z"'(y;)_%o)z} 12)

Finalmente, en la Fig. 3(c), se presenta un caso particular dentro del eslabon P, P, , donde se observa un
punto alineado en el centro del mismo. Esta configuracion se clasifica como una restriccion de puntos
alineados, que requiere la presencia de al menos tres puntos para su definicion. En este contexto, podemos
identificar la restriccion de distancia P, P, y dos restricciones de alineamiento entre los puntos PPP, .

Esto nos lleva a considerar cuatro ecuaciones en total de alineamiento, que incluyen el enlace P, P P;.

Ademas, debido a la simetria del sistema, las ecuaciones son similares, variando Unicamente en los subin-
dices.

A continuacion, se detallara mas de cerca el enlace de puntos alineados de la Fig. 3(c) y que se muestra
mas de cerca en la Fig. 4. Con sus respectivos vectores y coordenadas naturales,

Fig. 4. Detalle del enlace P, P, P,
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Entonces tenemos que el vector r,, es dos veces la distancia del vector ry3 por lo tanto nos da como

resultado la ecuacion (13) que observaremos a continuacion:
r,=2r, (13)

Seguido despejamos la ecuacion (13) el vector 2r,, e igualamos a cero y obtenemos la ecuacion (14).
r,—2r,=0 (14)

se descompone la Ecuaciones. (14)en sus respectivas coordenadas naturales, dando como resultado las 2
restricciones del enlace P, P, que son las siguientes ecuaciones (15) y (16):

(x,—x,)—2(x,—x,)=0 (15)
(yZ_yA)_z(y3_yA):0 (16)

de la misma manera se opera el enlace PP, F, el cual es simétrico al enlace descrito anteriormente, por
lo tanto, tenemos las (17)ecuaciones y (18);

(xs—xB)—2(x4—xB)=0 (17)
(ys _yB)_z(y4_yB):0 (18)

De esta manera, se opera con los demas enlaces de distancia P,P,, P,P,, P,P,y PP, . Esto se debe a que,

aprovechando la simetria inherente al mecanismo, las ecuaciones particulares se cumplen de manera general
para todos los pares y puntos del sistema. Gracias a esta simetria, las ecuaciones que componen el vector
de ecuaciones de restricciones cinematicas se presentan de forma uniforme, como se puede observar en la
ecuacion (19). En ella se establecen todas las restricciones que rigen el comportamiento del mecanismo de
direccion doble de cuatro barras. Estas restricciones definen los limites tanto inferiores como superiores de
los movimientos permitidos dentro del mecanismo de direccion, lo que es esencial para su correcto funcio-
namiento. Es importante destacar el papel fundamental del vector de ecuaciones de restricciones, denotado
como ®(q,z) , ya que constituye la base sobre la cual se realizan todos los calculos necesarios para analizar

y optimizar el sistema. La precision en la formulacion de estas ecuaciones es crucial, pues cualquier error
en su desarrollo podria dar lugar a resultados incorrectos. Un fallo en la correcta formulacion de las restric-
ciones no solo afectaria la calidad de los resultados obtenidos, sino que también impediria una convergencia
efectiva y rapida de las soluciones, lo que ralentizaria el proceso de optimizacion. Por esta razon, es esencial
llevar a cabo un analisis exhaustivo y cuidadoso en cada paso del proceso, asegurando que las ecuaciones
reflejen de manera fiel las condiciones fisicas y geométricas del sistema. Ademas, un manejo adecuado de
las restricciones permite un mejor entendimiento del comportamiento global del mecanismo y facilita la
identificacion de posibles mejoras en su disefio.
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®(q,z) =

vs=vs) =2(n=s) (19)

4. METODO PARA LA SOLUCION DE ECUACIONES

El método de Levenberg-Marquardt es un algoritmo eficaz para resolver problemas de ajuste no lineal y
optimizacion, que se centra en minimizar funciones de error cuadratico. Este método combina las estrate-
gias del descenso de gradiente y el método de Newton, lo que le permite mejorar la convergencia, especial-
mente en contextos donde el modelo es no lineal en los parametros. Durante su operacion, el algoritmo
alterna entre un enfoque mas conservador, que utiliza el descenso de gradiente, y un enfoque mas agresivo,
basado en el método de Newton, lo que optimiza la velocidad de convergencia al acercarse a la solucion
optima [6], [7].

Una de las caracteristicas clave de este método es su parametro de damping, que ajusta la mezcla de
ambos enfoques en funcion de la convergencia observada, permitiendo una adaptacidén dinamica durante el
proceso [8]. Debido a estas propiedades, el método de Levenberg-Marquardt se utiliza ampliamente en
diversas areas, como el ajuste de curvas y la calibracion de modelos, destacandose por su eficacia en pro-
blemas bien condicionados.

A continuacion, se detallara la estructura del método de Levenberg-Marquardt un diagrama. pero se
adaptara con ecuaciones de analisis cinematico que se deben resolver para obtener los resultados de esta
investigacion.

Algoritmo 1: Método de Levenberg-Marquard
Entradas: q,, @, 1, lter,
Salidas: q

1 para j=1a lter, hacer
2 A OO
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3 H OV
oq

4 si [V/]| < & entonces

5 break

6 fin si

7 (H+ AD)s < —Vf

8 S, < f(q+s)

9 si f, </ entonces

10 A< A/10

11 q<q+s

12 sino

13 A« A1-10

14 fin si

15 fin para

5. ANALISIS DE POSICION

La determinacion de la posicion inicial del mecanismo se establece a partir del valor inicial de las
coordenadas naturales, el cual se presenta en el vector qq. Este vector es fundamental, ya que proporciona
las referencias necesarias para configurar adecuadamente el sistema en su estado inicial. Luego se resuelve
el problema de posicion de la ecuacion (19) mediante el método optimizacion de Levenberg-Marquardt
descrito anteriormente. Podemos formular la cinematica de posicion como un problema de minimos cua-
drados como se muestra en la ecuacion (20).

minimize %q)(q, z) ®(q,z) (20)
q

Resolviendo de manera simulténea(H + /11) S =—Af, donde H es la matriz hessiana, I es la matriz

identidad, A es un valor escalar y Af es el gradiente.

Para determinar la posicion siguiente del mecanismo, se procede mediante incrementos unitarios hasta
cubrir completamente el rango de angulo de direccion de entrada, denotado como 6, . Este dngulo varia en

el intervalo de [-27°, 40°] y [-40°, 27°] segtin fuente consultada en Billi and Chand [9]. De esta forma, se
garantiza una exploracion exhaustiva de las posibles configuraciones hasta completar todo el rango de mo-
vimiento.

6. ERROR DE SINTESIS

Para error de sintesis solo se define el error primario que es la diferencia entre el angulo de direccion de la
rueda exterior y el angulo ideal dado por la condicion de Ackermann tal como se muestra a continuacion:

e=(6,-6,) 1)

donde: &, es el angulo generado al girar la rueda de saliday &, es el d&ngulo segun la condicion
de Ackermann que se muestra a continuacion en la ecuacion (22).
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S, =cot”! [%%—coté’ij (22)

donde:/ es la distancia entre ejes del vehiculo.

También se tienen cuenta los angulos de transmision de forma indirecta a través del calculo del determi-
nate de Jacobiano. Estos angulos aseguran que las fuerzas se transmitan de manera eficiente y que el me-
canismo opere de forma suave [10]. Para el mecanismo en cuestion se forman tres angulos de transmision

denotados con la letra £, 1,y 4 en donde las ecuaciones para calcular estos dngulos se muestran en la

ecuacion (23), (24) y (25) respectivamente. La ubicacion de estos en angulos en el mecanismo de direccion
puede observarse en la Fig. 3.

xl(xl _x2)+y1(y1 _yz)

| = arccos -
e T ]
s (xB )( )+( )(y3 )
Ha [(xff —x,) +(» [ K =)+ (3 -1 )2} a
MU, = arccos (xc—xG)(xs—x6)+(yc—)’6)(y5_y6) 23)

LG+ [ =a) + 02 -0)']

donde: g, 1,y u, sonlos angulos de transmision.

7. FORMULACION DEL PROBLEMA DE OPTIMIZACION

La formulacion del problema de optimizacion se fundamenta en el método de Levenberg-Marquardt, un
algoritmo que ofrece mayor robustez y eficiencia en la resolucion de sistemas de ecuaciones no lineales,
especialmente en situaciones donde la matriz Hessiana presenta problemas de singularidad o condiciona-
miento deficiente. El método de Newton, al depender directamente de la matriz Hessiana, suele fallar en
estos casos, ya que cuando dicha matriz se aproxima a valores cercanos a cero, el algoritmo experimenta
dificultades para converger, quedandose atrapado en ciclos de iteracion sin la posibilidad de alcanzar una
solucion de manera rapida y efectiva [8].Esto es particularmente problematico en sistemas complejos,
donde la estabilidad numérica es crucial para la eficiencia del proceso de optimizacion [11]. La formulacion
del problema queda como se muestra en la ecuacion (26). En donde, se incluye la resolucion del determi-
nante del Jacobiano, el cual debe ser distinto de cero en todo momento. Si el determinante es cero, se genera
una singularidad que, en términos simples, significa que el mecanismo se atasca y no puede moverse libre-
mente.

minimize g(z)=Y & +p). £(q,2)
i=1 i

sujeto a & -‘det(% ) < (26)

VAY AV

resolviendo  f(q,z)=min %(I)(q,z)r(l)(q,z)
q
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8. RESULTADOS NUMERICOS

Todas las soluciones obtenidas se generaron variando &, de —27° a 40° y, correspondientemente, J, de

—40° a 27° como sugieren Balli and Chand [9], en su investigacion. Este rango de variacion permitio lograr
un total de 68 puntos de precision, considerando que la variacion entre los “angulos fue de 1°. Asi, se
obtuvieron 68 puntos espaciados uniformemente a lo largo del eje J,, lo que proporciona un marco ade-

cuado para el analisis. Adicionalmente, se establecid w = 1,5 m, que representa el ancho entre ejes del
vehiculo, y / =2 m como la longitud entre el eje delantero y trasero. Para abordar el problema de optimi-
zacion, se utilizo la caja de herramientas del algoritmo de punto interior de Octave, que permite una reso-
lucion eficiente de problemas complejos. Este enfoque facilito el calculo del vector de solucion inicialz,, .
El vector inicial de variables de disefio, junto con los limites superiores ¢ inferiores, se detallan en la Tabla

1. A partir de estos valores, se realizaron las simulaciones para encontrar las soluciones optimas, que se
presentan en la Tabla 2.

Tabla 1. Parametros optimizados.

Variables de disefio | Limites inferiores | limites superiores | Disefio inicial | Unidades
xlo -0.1 0.2 0 [m]
0 -
¥, 0.21 0.21 0.02 [m]
xg 0.25 1.25 0.65 [m]
0 -

s 0.21 0.21 0.3 [m]

X, 0.25 1.25 0.65 [m]

V., -0.21 0.21 0.1 [m]

Tabla 2. Soluciones Optimas para el mecanismo de direccion doble-cuatro barras.
Variables de di- Solucién 6ptima 1 Solucién 6ptima 2 Solucién 6ptima 3 | Unida-
seflo des
x10 - 0.196061065020571 | 0.180555455961390 [m]
0.0299406205287200
ylo 0.131873885289682 | 0.208492036385158 | 0.207265442321363 [m]
x§ 0.252010110049633 | 0.552567686608999 | 0.550003033443116 [m]
yg 0.0537556297044345 | - - [m]
0.206906619985727 | 0.204537322743970

X, 0.262002391077959 | 0.611685565674030 | 0.558633113408977 [m]
V., 0.183758127076780 | 0.183789235244520 | 0.202747167968309 [m]

La Fig. 5(a). Representa solucion inicial, donde se implementaron los valores iniciales de las variables El
proceso de disefio permitié obtener un mecanismo que cumple con los requisitos funcionales basicos, lo
que marca el punto de partida para su posterior optimizacion. En la Fig. 5(b) se presenta la primera optimi-
zacion llevada a cabo.
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Por otro lado, en la Fig. 5(c) se muestran los avances obtenidos en una segunda optimizacion. En esta
fase, se logro una buena distribucion de las barras del mecanismo, lo que permitié una trayectoria mas
suave en el mecanismo. A pesar de estos avances, se observo que el sistema atun podria realizar una tercera
optimizacion, especialmente en la distribucion y el comportamiento dindmico de las barras, lo que sugirio
la necesidad de una optimizacién adicional.

Finalmente, la Fig. 5(d) ilustra los resultados de la tercera optimizacion realizada. En esta etapa, se al-
canzd una configuracion con una distribucion mas equilibrada de las barras, lo que permitié un funciona-
miento mas todavia mucho mas sueve del mecanismo. Se observa claramente que este disefio, mostrando
tiene la mejor distribucion alcanzada en el sistema de direccion de doble cuatro barras.

0.5 0.5 x x x x
Solucion optima 1
o ] 0f 1
Zo
05 ‘ ‘ ‘ ‘ 05 ‘ ‘ ‘ ‘
05 0 05 1 15 2 -0.5 0 0.5 1 1.5 2
(a) (b)
0.5 ‘ 0.5 . . : :
Solucion optima 2 Solucion Optima 3
o - o f
-05 1 1 1 | _05 I I I |
05 0 05 1 15 -0.5 0 0.5 1 1.5
©) @

Fig. 5. Disposicion de las barras del mecanismo de direccion doble-cuatro barras segin cada solucion dptima.

Fig. 6. muestran la convergencia de la funcién objetivo, recordando que la convergencia de la funcion
objetivo se refiere al proceso en el cual los valores de la funcidon objetivo se acercan a un valor éptimo a
medida que se realizan iteraciones en un algoritmo de optimizacion. En este contexto, se busca encontrar
el minimo de la funcién objetivo, que representa el mejor desempeiio posible seglin los criterios definidos.
Ademas, Se considera que una funcién objetivo converge cuando, tras multiples iteraciones, los valores
obtenidos se acercan a un valor especifico (minimo) y se estabilizan, mostrando cambios minimos en ite-
raciones sucesivas
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Fig. 6. Convergencias de la funcion objetivo para cada solucion.

En la Fig. 7, se muestra los errores estructurales. En la Fig. 7(a) se muestra el sistema de barras inicial
con un error maximo de 12.75°, la solucién 6ptima len la Fig. 7(b) con un error de 0.023°, la solucion
optima 2 en la Fig. 7(c) con un error de 0.004° y finalmente la solucion 6ptima 3 con un error de 0.001°
siendo este el mas bajo de las optimizaciones como se muestra en la Fig. 7(d).

En la Fig. 8 se observan los angulos de transmision para la solucion inicial, mostrada en la Fig. 8(a),
donde los angulos sobrepasan el limite superior. Ademas, se presentan los angulos de transmision que co-
rrespondientes a cada optimizacion realizada. En las Fig. 8(b) y 8(c), correspondientes a la primera y se-
gunda optimizacion, se observa que los angulos aun sobrepasan los limites, tanto superior como inferior.
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Por ultimo, en la tercera optimizacion se evidencia con claridad que los angulos se mantienen dentro del
rango permisible, sin sobrepasar los limites establecidos.

15, 2003 ragrawr
'z Z0 3 Solucion optima 1
3 O 5 o002
510 max (|e;|)=12.75 © max (|e;])=0.023°
w Tg 0.01
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0
2 0 5 000 20 0 20 40
5 -40 -20 0 20 40 LE ) )
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@ %107 =, x1 03
o 4r .7 ;e o 1 Y ;.-
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; _2 L o % _1 L
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Fig. 7. Se observa el error estructural de la solucion inicial y las soluciones optimas.
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Fig. 8. Se observa los angulos de transmision para el mecanismo de direccion inicial y para los mecanismos Optimos.
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9. CONCLUSION

El método propuesto para la sintesis Optima, basado en coordenadas naturales para el mecanismo de
direccion doble-cuatro barras, presentd desafios significativos durante su implementacion. A pesar de su
disefio inicial, se encontrd que el método de Newton fallo al intentar resolver el problema de optimizacion
en el entorno del software Octave. Este fallo se debid, en particular, a la singularidad de la matriz hessiana,
lo que impidi6 que el método convergiera adecuadamente. Este inconveniente fue resuelto al reemplazar el
método de Newton por el método de Levenberg-Marquardt, que demostrd ser mas robusto y capaz de ma-
nejar las limitaciones mencionadas. Este cambio permitié avanzar en el proceso de optimizacion sin los
problemas previos asociados a la singularidad.

Ademas, la adopcion del nuevo método exigid una revision de la formulacion del problema. En particular,
se elimind el parametro de ponderacion “v” el cual esta en el rango [0-1], donde cero indica que no cumple
la geometria ideal y uno que cumple de manera estricta. Los angulos de transmision “p”’de la funcién ob-
jetivo. Esta decision se baso en la evaluacion de que dichos parametros no tienen un impacto significativo
en la optimizacidn, lo que sugiere que su exclusion no compromete la efectividad del modelo. Esta simpli-
ficacion contribuy6 a una mayor claridad en la formulacion del problema y facilito el proceso de optimiza-
cion.

Se incluyd, ademas, una restriccion en la funcion objetivo que impide que la matriz hessiana adquiera
valores cercanos a cero, evitando asi la singularidad. Este enfoque no solo asegura la estabilidad del nuevo
método, sino que también garantiza que la programacion se ejecute sin contratiempos y alcance la conver-
gencia esperada. La integracion de esta restriccion es crucial para el éxito del proceso de optimizacion y
representa un avance importante en el disefio del mecanismo.

Las ecuaciones de restricciones o cinematicas del mecanismo de direccion doble-cuatro barras fueron
formuladas usando coordenadas naturales de manera satisfactoria, sin mayores complicaciones. Esto indica
que el método propuesto puede aplicarse exitosamente al mecanismo de direccion doble-cuatro barras, aun-
que es fundamental tener especial cuidado al seleccionar el método de solucion para la optimizacion. La
eleccion del método adecuado es determinante para realizar simulaciones efectivas y encontrar las optimi-
zaciones potenciales del mecanismo con éxito [13].

Las optimizaciones realizadas revelaron un error maximo de 0.004°, destacando especialmente la tercera
optimizacion, que presentd un error de solo 0.001° en comparacion con la solucion inicial que fue del
12°,75° como se muestran en las Fig. 7(d) y Fig. 7(a) respectivamente. Ademas, los dngulos de transmision
se mantuvieron dentro de los limites establecidos en la investigacion de [9].
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