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Resumen – En el presente trabajo se llevará a cabo la síntesis óptima de mecanismos doble cuatro barras, me-
diante el uso de coordenadas naturales iniciales de algunos pares cinemáticos. Este método novedoso se destaca 
por mantener la configuración inicial del mecanismo a lo largo de su rango de movimiento, lo que representa una 
ventaja sobre los métodos tradicionales, que no proporcionan esta información y se basan en las dimensiones que 
generalmente corresponden a las longitudes de los eslabones, complicando aún más el proceso de ensamblaje del 
mecanismo de dirección. Se aplican las coordenadas cartesianas de pares cinemáticos en posición neutra como 
variables de diseño para un mecanismo de dirección de doble cuatro barras. Se aplicará un algoritmo para resolver 
las ecuaciones de cinemática y determinar los ángulos óptimos, utilizando el software de código abierto Octave, 
lo que además permitirá realizar varias simulaciones y encontrar diversas soluciones de optimización del meca-
nismo de dirección. El enfoque de síntesis óptima ha sido aplicado con éxito a mecanismos de dirección de palanca 
central. Aunque este método resultó eficiente en la búsqueda soluciones óptimas, es importante destacar que todas 
las soluciones cumplen la con la condición ideal de Ackermann aproximadamente; sin embargo, no todas las 
optimizaciones encontradas son aplicables, ya que exceden los ángulos de transmisión. Por lo tanto, su imple-
mentación dependerá de la aplicación o de los parámetros específicos del vehículo. Se concluye que la implemen-
tación de coordenadas cartesianas de pares cinemáticos en posición neutral, como variables de diseño para un 
mecanismo de dirección de doble cuatro barras fue exitosa, debido a que todas las optimizaciones dieron conver-
gencia de la función objetivo de manera rápida y el cumplimiento aproximado de la condición de Ackermann. 

 Palabras clave – Mecanismos dirección, mecanismo doble cuatro-barras, síntesis dimensional óptima, coorde-
nadas naturales. 

Abstract – In the present work, the optimal synthesis of double four-bar mechanisms will be carried out by using 
the initial natural coordinates of some kinematic pairs. This novel method stands out for maintaining the initial 
configuration of the mechanism throughout its range of motion, which represents an advantage over traditional 
methods, which do not provide this information and are based on dimensions that generally correspond to the 
lengths of the links, further complicating the assembly process of the steering mechanism. Cartesian coordinates 
of kinematic pairs in neutral position are applied as design variables for a double four-bar steering mechanism. 
An algorithm for solving the kinematics equations and determining the optimal angles will be applied using the 
open source software Octave, which will also allow several simulations to be performed and various optimization 
solutions of the steering mechanism to be found. The optimal synthesis approach has been successfully applied 
to center lever steering mechanisms. Although this method proved to be efficient in finding optimal solutions, it 
is important to note that all solutions meet the Ackermann ideal condition approximately; however, not all opti-
mizations found are applicable, since they exceed the transmission angles. Therefore, their implementation will 
depend on the application or specific vehicle parameters. It is concluded that the implementation of Cartesian 
coordinates of kinematic pairs in neutral position as design variables for a double four-bar steering mechanism 
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was successful, since all the optimizations gave convergence of the objective function in a fast way and approxi-
mate fulfillment of Ackermann's condition. 

Keywords – Steering mechanisms, double four-bar mechanism, optimal dimensional synthesis, Natural coordi-
nates. 

1. INTRODUCCIÓN 

En el diseño de mecanismos de dirección, uno de los desafíos fundamentales es lograr una síntesis di-
mensional que optimice el rendimiento y la precisión del sistema. La optimización dimensional de los me-
canismos de dirección se ha investigado extensamente a través de diferentes enfoques, siendo uno de los 
más destacados el uso de coordenadas naturales. Las coordenadas naturales permiten una representación 
más directa de las relaciones geométricas y cinemáticas del mecanismo, lo cual es crucial para su diseño. 
Según algunos estudios previos, el uso de este enfoque puede reducir significativamente los errores de 
alineación en los mecanismos de dirección [1]. La síntesis dimensional óptima, como se ha demostrado en 
varios estudios, no solo mejora la precisión, sino también la facilidad de manufactura de los mecanismos.  

Por otro lado, varios estudios han explorado el uso de métodos de optimización matemática para la sín-
tesis de mecanismos de dirección y la aplicación de algoritmos evolutivos ha mostrado una mejora signifi-
cativa en los resultados obtenidos con métodos clásicos de síntesis dimensional [2]. Asimismo, otros estu-
dios de optimización utilizando coordenadas naturales ha facilitado el modelado cinemático al evitar el uso 
de funciones trascendentales. El problema de optimización se resuelve mediante un algoritmo genético con 
codificación continua, evitando el cálculo de derivadas altamente complejas [3]. A medida que la compu-
tación se ha vuelto más poderosa, la integración de técnicas de inteligencia artificial ha ganado relevancia 
en la optimización dimensional de estos mecanismos como las redes neuronales han sido aplicadas para 
predecir las mejores configuraciones dimensionales, abriendo nuevas alternativas para la automatización 
del diseño de mecanismos [4]. A pesar de los avances mencionados, existen aún desafíos significativos en 
la implementación práctica de estos enfoques, especialmente en la industria automotriz, donde los requisitos 
de precisión y confiabilidad son extremadamente altos [5]. La necesidad de perfeccionar la síntesis dimen-
sional de los mecanismos de dirección es cada vez más urgente, lo que ha impulsado la investigación en 
nuevas metodologías. 

En este contexto, el presente artículo propone un nuevo enfoque para la síntesis dimensional de mecanis-
mos de dirección basados en coordenadas naturales. El método que se pretende implementar se destaca 
especialmente por permitir el conocimiento de la configuración inicial del mecanismo, asegurando que esta 
se mantenga constante a lo largo de todo el rango de movimiento [6]. Esto representa una ventaja signifi-
cativa en comparación con métodos tradicionales, los cuales se centran en calcular las longitudes de los 
eslabones y, como consecuencia, no proporcionan información sobre la configuración inicial. La ausencia 
de este dato crítico puede complicar el proceso de ensamblaje del mecanismo, ya que frecuentemente exis-
ten varias maneras de llevar a cabo esta tarea, lo que se traduce en un desafío adicional [7]. 

Esta investigación tiene como objetivo explorar el método de coordenadas naturales en el diseño de me-
canismos de dirección de doble cuatro barras, aplicando un algoritmo para determinar los ángulos óptimos 
y validando los resultados mediante un modelado en Octave. Se presentarán los resultados obtenidos junto 
con su validación gráfica. Se mostrarán las optimizaciones encontradas para el mecanismo, donde se logró 
una convergencia total de la función objetivo y de la condición ideal de Ackermann. Este enfoque de síntesis 
óptima ha sido probado con éxito para un mecanismo de palanca central y se espera que sea aplicado pos-
teriormente a mecanismos de cuatro barras y de piñón y cremallera, ya que este método se ofrece como una 
nueva alternativa mucho más simple que los métodos tradicionales usados. 

En la siguiente sección 2, se inicia con la selección de variables. En el apartado 3, se lleva a cabo el 
análisis cinemático, donde se formulan y detallan las ecuaciones de restricción del mecanismo de dirección 
de doble cuatro barras. En el cuarto apartado, se selecciona el método para resolver las ecuaciones de res-
tricción, se analiza el error de síntesis y se formula el problema de optimización. A continuación, se imple-
mentan las ecuaciones obtenidas en Octave. Finalmente, se presentarán los resultados de las optimizaciones 
encontradas para el mecanismo de dirección doble-cuatro barras. 
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2. SELECCIÓN DE VARIABLES DEL MECANISMO DE DIRECCIÓN DOBLE-CUATRO 
BARRAS  

Se inicia con la identificación de variables de diseño las cuales se ubican sobre los pares cinemáticos del 
mecanismo. Cabe resaltar que solo son necesario una parte de las coordenadas de los pares puesto que el 
mecanismo de dirección es simétrico en la posición neutral. Los puntos identificados son 0

1p , 0
2p  y el punto 

fijo Ap . Estos pueden observarse en la Figura 1, junto con los demás puntos del mecanismo de dirección 

doble-cuatro barras. 

 

  El vector de variables de diseño z para el mecanismo de dirección doble-doble cuatro barras que esta 
dado por la ecuación (1),           

    

                              0 0 0 0
1 1 2 2

T

A Ax y x y x y   z  (1) 

 

donde 
0
1x y 

0
1y  son las coordenadas del punto 

0
1p ,

0
2x y 

0
2y  son las coordenadas del punto 

0
2p , Ax

y Ay
 son las 

coordenadas del punto fijo A . Cabe mencionar que el subíndice cero indica que son las coordenadas del 
mecanismo de dirección en la posición neutral. Es fundamental identificar los puntos espejo en la posición 
neutral del mecanismo, ya que esta información sirve como una estimación preliminar para resolver las 

ecuaciones de restricción asociadas al sistema. En el presente caso, los puntos espejo son 
0
4p
, 

0
5p

,
0
6p
 y Bp

. La identificación precisa de estos puntos permite establecer las condiciones iniciales del mecanismo y 
facilita la formulación de las restricciones de la que depende estos puntos y que en palabras más simples 
son la distancias en la que se encuentran ubicados cada punto del mecanismo de dirección doble-cuatro 

 

Fig. 1. Mecanismo de dirección doble-cuatro barras modelado en coordenadas naturales. 
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barras. A continuación, se describen las ecuaciones que se forman teniendo en cuenta la distancia de cada 
punto: 

                                        23
0 01

2 A  A ppp p  (2) 

                                                 0 0B A  p pp M p  (3) 

                                                 0 0
4 0 0 3  p p pp M  (4) 

                                                  0 0
5 0 0 2  p p pp M  (5) 

                                                 0 0
6 0 0 1  p p pp M  (6) 

donde: 0
4p , 0

5p y 0
6p  representan los puntos espejo del mecanismo, BP  es un punto fijo y 0

3P  es un punto en 

la posición inicial del mecanismo. mientras que 0P  corresponde al punto que se encuentra sobre el eje de 

simetría mostrado en la Fig. 1. Además, M  es la matriz que describe la transformación de los puntos espejo 
en relación con dicho eje de simetría mostrada más adelante en la Ecuación (7). Esta matriz juega un papel 
crucial en la formulación de las ecuaciones que vinculan los puntos del mecanismo en su configuración 
inicial. 

A continuación, se define La matriz de espejo M , mostrada en la siguiente ecuación, 
 

                                               
2

2

1 2 2

2 1 2
x x y

x y y

  
  

  
     

M  (7) 

donde: x y y  son los componentes del vector unitario que define el eje de simetría. 

3. ANÁLISIS CINEMÁTICO 

El análisis cinemático comienza con la colocación del mecanismo de dirección en una posición inicial 
arbitraria, tal como se ilustra en la Fig. 2. Para llevar a cabo este análisis, se emplean las coordenadas 
naturales, que permiten una representación más sencilla y adecuada del movimiento en el espacio. En este 
contexto, el punto de interés se define en función del ángulo de dirección de la rueda interior, el cual se 
expresa mediante la ecuación (8). Este ángulo es crucial para describir el comportamiento del sistema, ya 
que influye directamente en la trayectoria seguida por el vehículo. A partir de esta configuración inicial, se 
realiza un seguimiento detallado de las relaciones geométricas entre los distintos componentes del meca-
nismo de dirección, con el objetivo de obtener una comprensión más precisa de su funcionamiento cinemá-
tico. De esta manera, el análisis no solo permite predecir los movimientos de las ruedas, sino también op-
timizar el diseño del sistema para mejorar la maniobrabilidad del vehículo. Usando las coordenadas natu-
rales entonces, el punto 1p  se define en función del ángulo de dirección de la rueda interior   tal como se 

muestra en la ecuación (8) 

                                          
0

1 1
0

1 1

cos sin

sin cos
i i

i i

x x

x y

 
 

    
    

     
 (8) 
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donde 
0
1x y 

0
1y

 son las coordenadas del punto 1p
. 

 
A continuación, se define el vector de coordenadas naturales q ,el cual está formado por las coordenadas 

naturales de los puntos 2P , 3P , 4P , 5P  y 6P . Que esta dado como muestra en la ecuación (9), 

                                 2 2 3 3 4 4 5 5 6 6

T
x y x y x y x y x yq  (9) 

El vector de restricciones cinemáticas que se definen dentro de los limites inferior y superior de las va-
riables de diseño. Para este caso corresponde a 10 restricciones, 6 de distancia entre los enlaces 1 2PP , 2 AP P

, 3 4P P , 5 BP P , 5 6P P , 6 CP P y 4 restricciones de puntos alineados en los enlaces 2 3 AP P P y 5 4 BP P P  . A conti-

nuación, se detallarán algunos enlaces y pares que se forman para el mecanismo en cuestión, con sus coor-
denadas naturales. Cabe resaltar que no se mostrarán todos, debido a la simetría y que el procedimiento es 
el mismo; solo cambian sus coordenadas y además se mostrara un enlace particular que se forma en la Fig. 
3(c): 

 

Fig. 2. Mecanismo de dirección doble-cuatro barras posicionado de forma arbitraria. 
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Para el enlace 0 1P P Fig. 3(a) No se colocan ecuaciones de restricciones debido a que este punto es cono-

cido. Pero en el enlace 1 2PP mostrado en la Fig. 3(b), las ecuaciones de restricciones de distancia 1 2p pd

quedan de la siguiente como se muestra en la siguiente ecuación(10), 

                                                            12 12 12 0  r r d  (10) 

donde: 12r  es el vector desde el punto 1P  al punto 2P , y 12d es la distancia del vector desde el punto 1P  al

2P . 

Aplicando la ecuación (10), entonces la ecuación de restricción queda de la siguiente forma la siguiente 
forma obtenemos la ecuación (11). 

                                     2 20 0 0 0
2 1 2 1 2 1 2 1 2 1 2 1x x x x y y y y x x y y           

 (11) 

operando la Ecuación(11), queda como resultado la ecuación (12). que podemos observar a continuación: 

                                      2 22 2 0 0 0 0
2 1 2 1 2 1 2 1x x y y x x y y         

 (12) 

Finalmente, en la Fig. 3(c), se presenta un caso particular dentro del eslabón 2AP P , donde se observa un 

punto alineado en el centro del mismo. Esta configuración se clasifica como una restricción de puntos 
alineados, que requiere la presencia de al menos tres puntos para su definición. En este contexto, podemos 
identificar la restricción de distancia 2AP P   y dos restricciones de alineamiento entre los puntos 2 3 AP P P . 

Esto nos lleva a considerar cuatro ecuaciones en total de alineamiento, que incluyen el enlace 4 5BP P P . 

Además, debido a la simetría del sistema, las ecuaciones son similares, variando únicamente en los subín-
dices. 

A continuación, se detallará más de cerca el enlace de puntos alineados de la Fig. 3(c) y que se muestra 
más de cerca en la Fig. 4. Con sus respectivos vectores y coordenadas naturales,  
 
 

 
Fig. 4. Detalle del enlace 3 2AP P P  

 

Fig. 3. Detalles de los enlaces particulares que forman para el mecanismo de dirección doble-cuatro barras. 
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Entonces tenemos que el vector 2Ar  es dos veces la distancia del vector 𝐫஺ଷ por lo tanto nos da como 

resultado la ecuación (13) que observaremos a continuación: 
                                                              2 32A Ar r                                                                          (13) 

Seguido despejamos la ecuación (13) el vector 32 Ar e igualamos a cero y obtenemos la ecuación (14). 

                                                               2 32 0A A r r  (14) 

se descompone la Ecuaciones. (14)en sus respectivas coordenadas naturales, dando como resultado las 2 
restricciones del enlace 3 AP P que son las siguientes ecuaciones (15) y (16): 

                                                    2 32 0A Ax x x x     (15) 

                                                    2 32 0A Ay y y y     (16) 

de la misma manera se opera el enlace 5 4 BP P P el cual es simétrico al enlace descrito anteriormente, por 

lo tanto, tenemos las (17)ecuaciones y (18); 

                                                    5 42 0B Bx x x x     (17) 

                                                   5 42 0B By y y y     (18) 

De esta manera, se opera con los demás enlaces de distancia 2 AP P , 3 4P P , 5 BP P y 5 6P P . Esto se debe a que, 

aprovechando la simetría inherente al mecanismo, las ecuaciones particulares se cumplen de manera general 
para todos los pares y puntos del sistema. Gracias a esta simetría, las ecuaciones que componen el vector 
de ecuaciones de restricciones cinemáticas se presentan de forma uniforme, como se puede observar en la 
ecuación (19). En ella se establecen todas las restricciones que rigen el comportamiento del mecanismo de 
dirección doble de cuatro barras. Estas restricciones definen los límites tanto inferiores como superiores de 
los movimientos permitidos dentro del mecanismo de dirección, lo que es esencial para su correcto funcio-
namiento. Es importante destacar el papel fundamental del vector de ecuaciones de restricciones, denotado 
como ( , )Φ q z , ya que constituye la base sobre la cual se realizan todos los cálculos necesarios para analizar 

y optimizar el sistema. La precisión en la formulación de estas ecuaciones es crucial, pues cualquier error 
en su desarrollo podría dar lugar a resultados incorrectos. Un fallo en la correcta formulación de las restric-
ciones no solo afectaría la calidad de los resultados obtenidos, sino que también impediría una convergencia 
efectiva y rápida de las soluciones, lo que ralentizaría el proceso de optimización. Por esta razón, es esencial 
llevar a cabo un análisis exhaustivo y cuidadoso en cada paso del proceso, asegurando que las ecuaciones 
reflejen de manera fiel las condiciones físicas y geométricas del sistema. Además, un manejo adecuado de 
las restricciones permite un mejor entendimiento del comportamiento global del mecanismo y facilita la 
identificación de posibles mejoras en su diseño. 
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       

       

       

       

       

   

2 22 2 0 0 0 0
2 1 2 1 2 1 2 1

2 22 2 0 0
2 2 2 2

2 22 2 0 0 0 0
4 3 4 3 4 3 4 3

2 22 2 0 0
5 5 2 2

2 22 2 0 0 0 0
6 5 6 5 2 1 2 1

2

6 6

( , )

A A A A

B B A A

C C

x x y y x x y y

x x y y x x y y

x x y y x x y y

x x y y x x y y

x x y y x x y y

x x y y

         
         
         
         
          

  

Φ q z

   
   
   
   
   

2 22 0 0
1 1

2 3

2 3

5 4

5 4

2

2

2

2

A A

A A

B B

B B

x y

x x x x

y y y y

x x x x

y y y y

 
 
 
 
 
 
 
 
 
 
 
   
      
 

   
 
   
 
    
     

0

 (19) 

4. MÉTODO PARA LA SOLUCIÓN DE ECUACIONES 

El método de Levenberg-Marquardt es un algoritmo eficaz para resolver problemas de ajuste no lineal y 
optimización, que se centra en minimizar funciones de error cuadrático. Este método combina las estrate-
gias del descenso de gradiente y el método de Newton, lo que le permite mejorar la convergencia, especial-
mente en contextos donde el modelo es no lineal en los parámetros. Durante su operación, el algoritmo 
alterna entre un enfoque más conservador, que utiliza el descenso de gradiente, y un enfoque más agresivo, 
basado en el método de Newton, lo que optimiza la velocidad de convergencia al acercarse a la solución 
óptima [6], [7]. 

Una de las características clave de este método es su parámetro de damping, que ajusta la mezcla de 
ambos enfoques en función de la convergencia observada, permitiendo una adaptación dinámica durante el 
proceso [8]. Debido a estas propiedades, el método de Levenberg-Marquardt se utiliza ampliamente en 
diversas áreas, como el ajuste de curvas y la calibración de modelos, destacándose por su eficacia en pro-
blemas bien condicionados. 

A continuación, se detallará la estructura del método de Levenberg-Marquardt un diagrama. pero se 
adaptará con ecuaciones de análisis cinemático que se deben resolver para obtener los resultados de esta 
investigación. 
 
 
 
Algoritmo 1: Método de Levenberg-Marquard 

 Entradas: 0q , Φ ,  , maxIter  

 Salidas: q  

1 para 1j  a maxIter hacer 

2  Tf  qΦ Φ  
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3  f



H

q
 

4  si f   entonces  

5   break 
6  fin si 
7  ( ) f  H I s  

8  ( )pf f q s  

9  si pf f  entonces  

10   /10   

11    q q s  

12  si no 
13   10    

14  fin si 
15 fin para  

5. ANÁLISIS DE POSICIÓN  

La determinación de la posición inicial del mecanismo se establece a partir del valor inicial de las 
coordenadas naturales, el cual se presenta en el vector 𝒒𝟎. Este vector es fundamental, ya que proporciona 
las referencias necesarias para configurar adecuadamente el sistema en su estado inicial. Luego se resuelve 
el problema de posición de la ecuación (19) mediante el método optimización de Levenberg-Marquardt 
descrito anteriormente. Podemos formular la cinemática de posición como un problema de mínimos cua-
drados como se muestra en la ecuación (20). 

                                                  
1

minimize  ( , ) ( , )
2

T

q
Φ q z Φ q z  (20) 

Resolviendo de manera simultánea  S  H I f , donde H es la matriz hessiana, I es la matriz 

identidad,  es un valor escalar y f es el gradiente. 

Para determinar la posición siguiente del mecanismo, se procede mediante incrementos unitarios hasta 
cubrir completamente el rango de ángulo de dirección de entrada, denotado como i . Este ángulo varía en 

el intervalo de [-27°, 40°] y [-40°, 27°] según fuente consultada en Billi and Chand [9]. De esta forma, se 
garantiza una exploración exhaustiva de las posibles configuraciones hasta completar todo el rango de mo-
vimiento. 

6. ERROR DE SÍNTESIS 

Para error de síntesis solo se define el error primario que es la diferencia entre el ángulo de dirección de la 
rueda exterior y el ángulo ideal dado por la condición de Ackermann tal como se muestra a continuación: 

                                                              O OA     (21) 

 
donde:  O es el ángulo generado al girar la rueda de salida y  OA  es el ángulo según la condición 

de Ackermann que se muestra a continuación en la ecuación (22). 
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                                                         1cot cotOA i

w

l
     

 
                                             (22) 

donde: l   es la distancia entre ejes del vehículo. 
También se tienen cuenta los ángulos de transmisión de forma indirecta a través del cálculo del determí-

nate de Jacobiano. Estos ángulos aseguran que las fuerzas se transmitan de manera eficiente y que el me-
canismo opere de forma suave [10]. Para el mecanismo en cuestión se forman tres ángulos de transmisión 
denotados con la letra 1 , 4 y 6  en donde las ecuaciones para calcular estos ángulos se muestran en la 

ecuación (23), (24) y (25) respectivamente. La ubicación de estos en ángulos en el mecanismo de dirección 
puede observarse en la Fig. 3. 

                    
   

       
1 1 2 1 1 2

1
2 2 2 20 0 0 0 0 0

1 1 2 1 2 1

cos
x x x y y y

arc
x y x x y y



 
   

  
                

 (23) 

             
     

       
4 3 4 4 3 4

4 2 2 2 20 0 0 0 0 0
4 4 4 3 4 3

cos B B

B B

x x x x y y y y
arc

x x y y x x y y


 
                       

 (24) 

                   
     

       
6 5 6 6 5 6

6
2 2 2 20 0 0 0 0 0

1 1 2 1 2 1

cos C Cx x x x y y y y
arc

x y x x y y


 
     

  
                

 (25) 

donde: 1 , 4 y 6  son los ángulos de transmisión. 

7. FORMULACIÓN DEL PROBLEMA DE OPTIMIZACIÓN 

La formulación del problema de optimización se fundamenta en el método de Levenberg-Marquardt, un 
algoritmo que ofrece mayor robustez y eficiencia en la resolución de sistemas de ecuaciones no lineales, 
especialmente en situaciones donde la matriz Hessiana presenta problemas de singularidad o condiciona-
miento deficiente. El método de Newton, al depender directamente de la matriz Hessiana, suele fallar en 
estos casos, ya que cuando dicha matriz se aproxima a valores cercanos a cero, el algoritmo experimenta 
dificultades para converger, quedándose atrapado en ciclos de iteración sin la posibilidad de alcanzar una 
solución de manera rápida y efectiva [8].Esto es particularmente problemático en sistemas complejos, 
donde la estabilidad numérica es crucial para la eficiencia del proceso de optimización [11]. La formulación 
del problema queda como se muestra en la ecuación (26). En donde, se incluye la resolución del determi-
nante del Jacobiano, el cual debe ser distinto de cero en todo momento. Si el determinante es cero, se genera 
una singularidad que, en términos simples, significa que el mecanismo se atasca y no puede moverse libre-
mente. 

                                     
 

2

1

minimize  ( ) ( , )

sujeto a               - det <0      

                               

1
resolviendo     ( , )= min  ( , ) ( , ) 

2

n n

i i
i i

qi

T
i

g f

f

 

 


 

 

 

q

z q z

z z z

q z Φ q z Φ q z

 (26) 
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8. RESULTADOS NUMÉRICOS 

Todas las soluciones obtenidas se generaron variando i de −27◦ a 40◦ y, correspondientemente, o de 

−40° a 27° como sugieren Balli and Chand [9], en su investigación. Este rango de variación permitió lograr 
un total de 68 puntos de precisión, considerando que la variación entre los ´ángulos fue de 1°. Así, se 
obtuvieron 68 puntos espaciados uniformemente a lo largo del eje i , lo que proporciona un marco ade-

cuado para el análisis. Adicionalmente, se estableció w = 1,5 m, que representa el ancho entre ejes del 
vehículo, y l  = 2 m como la longitud entre el eje delantero y trasero. Para abordar el problema de optimi-
zación, se utilizó la caja de herramientas del algoritmo de punto interior de Octave, que permite una reso-
lución eficiente de problemas complejos. Este enfoque facilitó el cálculo del vector de solución inicial 0z . 

El vector inicial de variables de diseño, junto con los límites superiores e inferiores, se detallan en la Tabla 
1. A partir de estos valores, se realizaron las simulaciones para encontrar las soluciones óptimas, que se 
presentan en la Tabla 2. 

Tabla 1. Parámetros optimizados. 

Variables de diseño Limites inferiores limites superiores Diseño inicial Unidades 

0
1x  -0.1 0.2 0 [m] 

0
1y  -0.21 0.21 0.02 [m] 

0
2x  0.25 1.25 0.65 [m] 

0
2y  -0.21 0.21 0.3 [m] 

            Ax  0.25 1.25 0.65 [m] 

            Ay  -0.21 0.21 0.1 [m] 

 
 

Tabla 2. Soluciones óptimas para el mecanismo de dirección doble-cuatro barras. 

Variables de di-
seño 

Solución óptima 1 Solución óptima 2 Solución óptima 3 Unida-
des 

0
1x  -

0.0299406205287200 
0.196061065020571 0.180555455961390 [m] 

0
1y  0.131873885289682 0.208492036385158 0.207265442321363 [m] 

0
2x  0.252010110049633 0.552567686608999 0.550003033443116 [m] 

0
2y  0.0537556297044345 -

0.206906619985727 
-
0.204537322743970 

[m] 

Ax  0.262002391077959 0.611685565674030 0.558633113408977 [m] 

Ay  0.183758127076780 0.183789235244520 0.202747167968309 [m] 

 
La Fig. 5(a). Representa solución inicial, donde se implementaron los valores iniciales de las variables El 

proceso de diseño permitió obtener un mecanismo que cumple con los requisitos funcionales básicos, lo 
que marca el punto de partida para su posterior optimización. En la Fig. 5(b) se presenta la primera optimi-
zación llevada a cabo. 
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Por otro lado, en la Fig. 5(c) se muestran los avances obtenidos en una segunda optimización. En esta 
fase, se logró una buena distribución de las barras del mecanismo, lo que permitió una trayectoria más 
suave en el mecanismo. A pesar de estos avances, se observó que el sistema aún podría realizar una tercera 
optimización, especialmente en la distribución y el comportamiento dinámico de las barras, lo que sugirió 
la necesidad de una optimización adicional. 

Finalmente, la Fig. 5(d) ilustra los resultados de la tercera optimización realizada. En esta etapa, se al-
canzó una configuración con una distribución más equilibrada de las barras, lo que permitió un funciona-
miento más todavía mucho más sueve del mecanismo. Se observa claramente que este diseño, mostrando 
tiene la mejor distribución alcanzada en el sistema de dirección de doble cuatro barras.  
 

 
 

Fig. 6. muestran la convergencia de la función objetivo, recordando que la convergencia de la función 
objetivo se refiere al proceso en el cual los valores de la función objetivo se acercan a un valor óptimo a 
medida que se realizan iteraciones en un algoritmo de optimización. En este contexto, se busca encontrar 
el mínimo de la función objetivo, que representa el mejor desempeño posible según los criterios definidos. 
Además, Se considera que una función objetivo converge cuando, tras múltiples iteraciones, los valores 
obtenidos se acercan a un valor específico (mínimo) y se estabilizan, mostrando cambios mínimos en ite-
raciones sucesivas 

 

Fig. 5. Disposición de las barras del mecanismo de dirección doble-cuatro barras según cada solución óptima. 
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En la Fig. 7, se muestra los errores estructurales. En la Fig. 7(a) se muestra el sistema de barras inicial 
con un error máximo de 12.75°, la solución óptima 1en la Fig. 7(b) con un error de 0.023°, la solución 
óptima 2 en la Fig. 7(c) con un error de 0.004° y finalmente la solución óptima 3 con un error de 0.001° 
siendo este el más bajo de las optimizaciones como se muestra en la Fig. 7(d). 

 
En la Fig. 8 se observan los ángulos de transmisión para la solución inicial, mostrada en la Fig. 8(a), 

donde los ángulos sobrepasan el límite superior. Además, se presentan los ángulos de transmisión que co-
rrespondientes a cada optimización realizada. En las Fig. 8(b) y 8(c), correspondientes a la primera y se-
gunda optimización, se observa que los ángulos aún sobrepasan los límites, tanto superior como inferior. 

  

Fig. 6. Convergencias de la función objetivo para cada solución. 
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Por último, en la tercera optimización se evidencia con claridad que los ángulos se mantienen dentro del 
rango permisible, sin sobrepasar los límites establecidos. 

 

Fig. 7. Se observa el error estructural de la solución inicial y las soluciones optimas. 

 

Fig. 8. Se observa los ángulos de transmisión para el mecanismo de dirección inicial y para los mecanismos óptimos. 
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9. CONCLUSIÓN 

El método propuesto para la síntesis óptima, basado en coordenadas naturales para el mecanismo de 
dirección doble-cuatro barras, presentó desafíos significativos durante su implementación. A pesar de su 
diseño inicial, se encontró que el método de Newton falló al intentar resolver el problema de optimización 
en el entorno del software Octave. Este fallo se debió, en particular, a la singularidad de la matriz hessiana, 
lo que impidió que el método convergiera adecuadamente. Este inconveniente fue resuelto al reemplazar el 
método de Newton por el método de Levenberg-Marquardt, que demostró ser más robusto y capaz de ma-
nejar las limitaciones mencionadas. Este cambio permitió avanzar en el proceso de optimización sin los 
problemas previos asociados a la singularidad. 

Además, la adopción del nuevo método exigió una revisión de la formulación del problema. En particular, 
se eliminó el parámetro de ponderación “ѵ” el cual está en el rango [0-1], donde cero indica que no cumple 
la geometría ideal y uno que cumple de manera estricta. Los ángulos de transmisión “µ”de la función ob-
jetivo. Esta decisión se basó en la evaluación de que dichos parámetros no tienen un impacto significativo 
en la optimización, lo que sugiere que su exclusión no compromete la efectividad del modelo. Esta simpli-
ficación contribuyó a una mayor claridad en la formulación del problema y facilitó el proceso de optimiza-
ción. 

Se incluyó, además, una restricción en la función objetivo que impide que la matriz hessiana adquiera 
valores cercanos a cero, evitando así la singularidad. Este enfoque no solo asegura la estabilidad del nuevo 
método, sino que también garantiza que la programación se ejecute sin contratiempos y alcance la conver-
gencia esperada. La integración de esta restricción es crucial para el éxito del proceso de optimización y 
representa un avance importante en el diseño del mecanismo. 

Las ecuaciones de restricciones o cinemáticas del mecanismo de dirección doble-cuatro barras fueron 
formuladas usando coordenadas naturales de manera satisfactoria, sin mayores complicaciones. Esto indica 
que el método propuesto puede aplicarse exitosamente al mecanismo de dirección doble-cuatro barras, aun-
que es fundamental tener especial cuidado al seleccionar el método de solución para la optimización. La 
elección del método adecuado es determinante para realizar simulaciones efectivas y encontrar las optimi-
zaciones potenciales del mecanismo con éxito [13].  

Las optimizaciones realizadas revelaron un error máximo de 0.004°, destacando especialmente la tercera 
optimización, que presentó un error de solo 0.001° en comparación con la solución inicial que fue del 
12°,75° como se muestran en las Fig. 7(d) y Fig. 7(a) respectivamente. Además, los ángulos de transmisión 
se mantuvieron dentro de los límites establecidos en la investigación de [9]. 
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