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Resumen – En el material presentado se muestra una solución a tres problemas teóricos de engranajes de dos 
grados de libertad: obtención de la ecuación de la línea de contacto del engrane biparamétrico, determinación de 
la ecuación de la superficie exterior del engrane biparamétrico, determinación del espesor de los dientes del en-
grane biparamétrico. Se muestra la definición de un tipo de interferencia en la superficie de cresta de los dientes 
de engranes biparamétricos que se manifiesta en agudeza de éstos. Se presentan los resultados del cálculo del 
espesor de los dientes en la superficie de cresta de un engrane biparamétrico. El material está presentado con in-
dicación y terminología correspondiente a las Normas ISO. 

Palabras clave – Teoría de engranajes, engranajes espaciales, interferencia en los engranes biparamétricos. 

1. INTRODUCCIÓN 

En varios trabajos [1-4] se representan los análisis teóricos y aplicaciones prácticas de los engranajes de 
dos grados de libertad, conocidos como biparamétricos. 

Éstos (véase la Fig. 1) están compuestos de un engrane cilíndrico y otro biparamétrico y están designa-
dos a transmitir el movimiento de rotación de una flecha a otra con una variación del ángulo de intersec-
ción de sus ejes en un rango grande, teóricamente de 0º a 180º. 

En estos trabajos se muestran resultados de análisis de la cinemática de los engranajes compuestos de 
un engrane biparamétrico y otro cilíndrico cuyos parámetros son distintos del engrane generador [2], tam-
bién se representa un método de determinación de un tipo de interferencia en la raíz del diente del engra-
ne biparamétrico, denominado socavación [4]. Ésta aparece en el proceso de maquinado y perjudica el 
engrane. Y en los trabajos [5, 6] se representa el mismo método empleado para los engranes espaciales de 
un grado de libertad. 

Sin embargo la socavación no es el único peligro que puede tener el engranaje. Existe otro tipo de inter-
ferencia cuando ambas superficies del diente, la izquierda y la derecha, se intersecan a una altura menor 
que la altura necesaria. Esto se manifiesta en el diente agudo, lo que lo debilita en la cresta y en el engra-
naje con el otro engrane puede disminuir la razón de contacto. 

El diente agudo se puede especificar midiendo el espesor de los dientes en el diámetro de cresta. Aquí 
se muestra un método para el cálculo del espesor de los dientes a la altura de un radio arbitrario rx y en la 
superficie exterior del engrane biparamétrico. La igualdad a cero del espesor del diente en la superficie 
exterior o un signo negativo de su magnitud manifiesta interferencia en la cresta. 
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Fig. 1. Modelo físico del engranaje del engrane cilíndrico 1 con dos engranes biparamétricos: con el 2 realiza la variación del 
ángulo de intersección de los ejes en el rango hasta 90º, y con el 3 hasta 60º. 

2. INTRODUCCIÓN EN LA TEORÍA GENERAL DE LOS ENGRANAJES 
BIPARAMÉTRICOS 

2.1. La ecuación de la línea de contacto de engranaje 

La primera tarea que se necesita resolver en la teoría de engranajes es la determinación de la ecuación 
de la normal común en la que se realiza el contacto de dos superficies conjugadas. Los engranajes bipa-
ramétricos pertenecen a los espaciales, por eso la determinación de éstos se basa en el teorema general 
sobre la relación de transmisión instantánea presentada en el trabajo [7]. 

El teorema citado establece, que si M1 y M2 son los puntos de intersección de la normal común n-n con 
los planos paralelos P1 y P2 que pasan a través de los ejes de los engranes, entonces las velocidades de 
estos puntos son iguales y la relación de transmisión instantánea en el engranaje es inversamente propor-
cional a la razón de los radios vectores de estos puntos. 

El teorema se ilustra en la Fig. 2 donde las superficies F1 y F2 son conjugadas, pertenecen a los eslabo-
nes 1 y 2 y giran alrededor de los ejes O1O1 y O2O2 con velocidades angulares ω1 y ω2, respectivamente. 
Las superficies están en contacto en el punto K a través del cual está trazada la normal común n-n. Ésta en 
los puntos M1 y M2 interseca los planos P1 y P2 que son paralelos y pasan a través de los ejes O1O1 y 
O2O2, respectivamente. 

Las velocidades de los puntos K1 y K2 son los productos vectoriales de los vectores de las velocidades 
angulares 1ω  y 2ω  por los radios vectores 1Kr  y 2Kr . Su expresión matemática es: 111 KK rv ×= ω  y 

222 KK rv ×= ω . 
Según el teorema general de engranajes, en el punto de contacto, el vector de la velocidad relativa de las 

superficies conjugadas es perpendicular a la normal común n-n, lo que se expresa como: 
( ) 012 =−× KK vvn  [8]. Por consiguiente, las proyecciones de las velocidades vK1 y vK2 sobre la normal 

común son iguales . Ya que los puntos M21 KK vv = 1 y M2 se ubican sobre la misma normal y pertenecen 
a los mismos engranes, las proyecciones de los vectores velocidad de éstos sobre la normal n-n son igua-
les a los del movimiento de los puntos K1 y K2. Debido a que los planos P1 y P2, donde se ubican los pun-
tos M1 y M2, son paralelos, los vectores velocidad de éstos también son paralelos, tienen el mismo sentido 
y son iguales en magnitud, es decir: 12 MM vv = . Teniendo en cuenta que 111 rvM ω=  y 222 rvM ω−= , 
(en el engranaje externo las velocidades angulares ω1 y ω2 tienen sentido opuesto), se tiene: 

2211 rr ωω −=  y la relación de transmisión resulta como: 
1

2

2

1
12 r

ru −=−=
ω
ω

. 
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Fig. 2. Diagrama que ilustra la interacción de las superficies  Fig. 3. Diagrama que ilustra el uso del teorema sobre la 
conjugadas F1 y F2 en el punto de contacto K y el modo de  relación de transmisión instantánea para la obtención del 
obtención de las velocidades de los puntos M1 y M2 de cruce  ángulo de engranaje para los engranajes biparamétricos.  
de la normal común n-n con los planos paralelos P1 y P2.   

 

El valor del teorema consiste en que en los engranajes espaciales, los que no se reducen al teorema de 
Willis sobre la relación de transmisión instantánea para los mecanismos planos, siempre se pueden encon-
trar dos planos paralelos que atraviesen los ejes de los eslabones que engranan y con estos determinar la 
normal común y la relación de transmisión instantánea. El uso del teorema para el problema planteado se 
describe a continuación. 

En la Fig. 3 en las proyecciones a y b mutuamente ortogonales están representados los sistemas de co-
ordenadas Sh´(xh´, yh´, zh´), que es inmóvil al engrane generador, y S´(x´, y´, z´), que es inmóvil al bipara-
métrico. Ambos sistemas están a distancias Lh y L2 desde el eje q-q alrededor del cual gira el sistema S´ 

con respecto al Sh´ con la velocidad angular 
dt

d h
r

δ
ω = . Los sistemas de coordenadas están dispuestos de 

modo que los planos (yh´, zh´) y (y´, z´) sean perpendiculares al eje q-q y estén a una distancia aω uno de 
otro. 

Para encontrar la ecuación de la normal común hay que determinar el plano de su ubicación ya que ésta, 
en general, puede estar en el plano (xh´, yh´) o en cualquier otro paralelo a éste. 

Para la determinación de la ubicación del plano de ubicación de la normal n-n se pueden emplear méto-
dos matemáticos [3], pero aquí se empleará, como el más claro, un método gráfico utilizado en el trabajo 
[2]. 

Si se supone que la línea de contacto se ubica en el plano paralelo al (xh´, yh´), situado a una distancia zo 
de la misma (Fig. 4), entonces, el punto de contacto K, con el movimiento del eslabón 2 alrededor del eje 

q-q, tiene una velocidad Kr
K

rU ×ω=2 . Al descomponer 2K
U  en componentes 2K

yU , paralela al eje yh´ 

y 2K
zU  paralela al zh´, se puede llegar a la siguiente conclusión. 

La componente 2K
zU  es perpendicular al plano d-d, en que se ubica la normal común n-n, por consi-

guiente es perpendicular a la misma y su producto vectorial es igual a cero: 02 =×
K
zUn . Esto significa 

que la componente indicada no ejerce ninguna influencia sobre el movimiento relativo de los eslabones. 
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Fig. 4. Diagrama que ilustra que la suposición sobre la dispo- Fig. 5. Diagrama que muestra correlación entre los pa- 
sición del punto de contacto K y de la normal común n-n en el rámetros de la evolvente y el movimiento de éste junto 
proceso de interacción del engrane generador con el biparamé- con el sistema de coordenadas móvil Sh respecto al in- 
trico fuera del plano (xh´, yh´) es errónea.   móvil S´h. 
 

La componente 2K
yU  se ubica en el mismo plano d-d. Ya que la línea de contacto n-n forma un ángulo 

de hη  respecto al eje q-q (véase la figura 3b), resulta que la componente 2K
yU  no es perpendicular a la 

normal. Por consiguiente, el producto vectorial de éstos no es igual a cero: 02 ≠×
K
yUn . 

Si la suposición anterior fuera correcta, entonces esto indicaría que la herramienta de corte tiene movi-
miento lineal respecto al eslabón 2 en la dirección del eje yh´, es decir, la herramienta se aleja o se acerca 
al engrane biparamétrico, lo que contradice las condiciones del proceso de tallado. 

Las condiciones de tallado dicta el diseño de la máquina para que deba ser hecho el engranaje. En la 
mayoría de los casos se necesita hacer engranaje con la distancia entre los centros fija. Para el caso de la 
formación del engrane biparamétrico se necesita el engrane con el eje de oscilación q-q fijo al eje de rota-
ción de éste. Por eso las distancias L2 y Lh son fijas. De estos razonamientos resulta que el movimiento 
relativo en la dirección transversal de los eslabones no se realiza y la componente 2K

yU  en realidad es 

igual a cero, por consiguiente: 02 =×
K

Un . Igualdad 02 =×
K

Un  significa que el vector 2K
U  es perpen-

dicular al plano (x´h, y´h), es decir, la normal común n-n, para el caso cuando el engrane biparamétrico 
está en contacto con la herramienta de corte, se ubica en el plano (x´h, y´h), y la distancia zo es igual a cero 
(zo=0). 

Para la formación de los dientes de engranes se puede utilizar cualquier curva: circunferencia, cicloide, 
evolvente, etc. Teniendo en cuenta que en la industria el perfil más usado es el de evolvente, éste se toma 
para la formación del perfil de los dientes del engrane biparamétrico. En calidad de la herramienta de 
corte se toma piñón cortador. 

Para las investigaciones teóricas se usa un engrane generador. Se trata de un engranaje imaginario, con 
un perfil idéntico al del piñón cortador. Para la obtención de la ecuación del perfil, se trabaja con los sis-
temas de coordenadas Sh y S´h antes descritos y en el sistema Sh se dispone el perfil del engrane generador 
(Fig. 5). Su ecuación en el sistema de coordenadas S´h será: 

( )

( )

zz
α

ry

α
α

rx

h

hxh
xh

bh
h

hxh
xh

bh
h

=

+θα=

+=

´

ψcos
cos

´

ψsin
cos

´

                                               (1) 
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en que rbh es el radio de círculo básico del engrane generador; αxh es el ángulo de presión en el punto de 
perfil del diente en la altura del radio vector xhr ; ψh es el ángulo central que corresponde a la mitad del 
ángulo entre los dientes en el círculo básico del engrane generador. 

Si se da un giro al engrane generador junto con el sistema de coordenadas Sh respecto al sistema S´h en 
el ángulo ϕh el punto de cruce K de la evolvente con la normal n-n va a deslizarse sobre la evolvente y 
sobre la normal, con este va a cambiar el ángulo αxh  y el radio vector xhr . De la Fig. 5 se puede obtener 
la relación entre el ángulo αxh y el ϕh. Esta se representa como: 

hxhhhxh ψ−α−η+ϕ=α inv  

donde invαxh es la función de involuta en el punto con radio vector xhr , xhxhxh α−α=α taninv , y ηh es el 
ángulo que determina la orientación de la normal n-n en el sistema de coordenadas Sh´. 

El proceso de obtención de los datos que de manera única definen la ubicación de la normal común n-n 
es el siguiente. 

En el sistema de coordenadas S´h se coloca la normal n-n tangente al círculo básico bajo el ángulo ηh 
cuyo valor se desconoce (véase la Fig. 3). Luego en el mismo sistema de coordenadas se colocan dos 
planos paralelos (y´h, z´h) y (y´, z´) del modo que la normal los interseca en los puntos Mh y M2, respecti-
vamente. Al emplear el teorema general sobre la relación de transmisión instantánea se puede obtener la 
correlación siguiente: 

2MMh vv =                      (2) 

Según la Fig. 3, el radio vector RMh del punto Mh del engrane generador es igual a: 

h

bh
Mh

r
R

ηcos
= ,                           (3) 

y el radio vector RM2 del punto M2, del engrane biparamétrico, es: 

( ) hhMhhM aRLLR δηω costan22 −−+= .                                         (4) 

Al multiplicar (3) por ωh y (4) por hhu22 ωω = , donde u2h es el valor absoluto de la relación de trans-

misión del engranaje: 
2

2
2 z

z
u h

h
h ==

ω
ω

 (aquí zh y z2 son los números de dientes del engrane generador y 

del biparamétrico, respectivamente) se obtienen las velocidades de los puntos Mh y M2. Para el punto Mh 
ésta será: 

h
h

bh
Mh

r
v ω

ηcos
= ;                                (5) 

y para el M2: 

( )[ ] hhhhMhhM uaRLLv ωδηω 222 costan−−+= .                                      (6) 

Al sustituir (5) y (6) en (2), y tomar para los engranes simétricos 0=ωa  se obtiene: 

( )
( )hhh

hhbh
h LLu

ur
δ

δ
η

cos
cos1

cos
22

2

+
−

= .                                                       (7) 

La ecuación (7) es la de la normal común que determina las condiciones del engranaje. 
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Fig. 6. Representación gráfica del método de la obtención del espesor de los dientes del engrane biparamétrico mediante el 
cilindro auxiliar de radio rx. 

3. DETERMINACIÓN DEL ESPESOR DE LOS DIENTES DEL ENGRANE 
BIPARAMÉTRICO 

3.1. Determinación del espesor de los dientes en la altura de radio rx 

Ahora se puede proceder a la determinación del espesor de los dientes del engrane biparamétrico. Para 
éste se toma el perfil derecho del diente del engrane generador (véase la figura 5). 

En la Fig. 6 se presenta la disposición de los sistemas de coordenadas S´ y Sh´, antes descritos, a los 
cuales se adicionan: el sistema S2(x2, y2, z2), que es el del engrane biparamétrico unido rígidamente con 
éste, y Sh(xh, yh, zh), unido rígidamente con el engrane generador. El sistema S2 gira alrededor del eje z´ del 
sistema de coordenadas S´ con velocidad angular ω2 y el Sh gira respecto al sistema Sh´ alrededor del eje 
zh´ con velocidad angular ωh. Las velocidades angulares se relacionan mediante: 

22
2

1
ω
ωh

h
h u

u ==                               (8) 

El espesor del diente en el radio arbitrario rx se puede determinar de diferentes modos: partiendo de la 
ecuación de la superficie que se genera determinar la coordenada x2 del punto que se ubica el radio rx, 
donde la coordenada x2 es igual a la mitad de la cuerda del espesor del diente, o mediante cortes de la 
misma superficie, entre otras posibilidades. Todos estos métodos exigen la obtención de la ecuación de la 
superficie lateral del diente del engrane biparamétrico. 

Aquí se presenta un método que formalmente no exige la composición de la ecuación de la superficie 
lateral del diente del engrane que se genera. 

La idea consiste en lo siguiente. La superficie lateral del diente del engrane biparamétrico es de doble 
curvatura y no se reduce al plano; por eso adicionalmente se construye el cilindro auxiliar de radio rx cuyo 
eje será coincidente con el z´ y se define el punto K de cruce del cilindro con la normal común n-n. Te-
niendo en cuenta que todos los puntos de contacto del engrane generador y del biparamétrico están en 
ésta, el punto K se considera el de contacto de las superficies conjugadas. Si se gira el engrane generador 
hasta el cruce de evolvente con el punto K se define la posición angular de éste. Ya que el engrane gene-
rador está unido con el biparamétrico mediante la relación de transmisión (8) se define el ángulo entre el 
plano (y2, z2) y el radio vector Kr  del punto K, lo que determina la mitad del espesor angular del diente en 
el mismo punto. 
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Luego se determina la distancia desde el punto K hasta el plano (y2, z2) lo que determina la mitad del 
espesor del diente en el radio rx. 

Comúnmente la normal n-n atraviesa el cilindro en dos puntos. Para definir el cual de éstos hay que to-
mar como el de contacto del engranaje biparamétrico con el generador, se necesita analizar la orientación 
de la normal respecto al sistema de coordenadas S´. Al examinar la Fig. 6, se puede llegar a la conclusión 
de que, en calidad de punto de contacto se puede tomar solamente el que esté ubicado a la menor distan-
cia desde el punto N, que es el de tangencia de la n-n con el círculo básico. Este punto también tendrá la 
menor distancia desde el plano (y2, z2). Por consiguiente, la tarea consiste en la determinación de las coor-
denadas de éste punto. 

La ecuación del cilindro auxiliar en el sistema de coordenadas S´ se escribirá en forma: 

xx

xxx

xxx

zz
ry

senrx

=
ϕ=

ϕ=

´
cos´

´
                                  (9) 

y la ecuación de la normal común n-n en el mismo sistema de coordenadas S´ se presentará como: 

( )
( ) (
( ) hhhxhhhbhnn

hhhxhhhbhnn

xhhhbhnn

Lηηrz
δLLηηry

ηηrx

δ−δ+=
++δ+=

−=

−

−

−

sensenθtansencos´
coscosθtansencos´

θtancossen´

2 )                              (10) 

El punto de cruce de la normal con la superficie del cilindro se presenta en forma: 

nnx

nnx

nnx

zz
yy
xx

−

−

−

=
=
=

´´
´´
´´

.                                                                   (11) 

Al sustituir (9) y (10) en (11) se tiene: 

Er
DErηD

x

xhh
K

22costan
sen

−+δ
=ϕ                                              (12) 

Indicaciones, tomados en la formula (12), son los siguientes: ϕK es el ángulo entre el radio vector rK del 
punto de cruce K y el plano (y’, z´) en el sistema de coordenadas S´ (véase la Fig. 6), 

hh
h

hbh LL
r

D δ−−
η

δ
= cos

cos
cos

2  y . hhE δη 22 costan1+=

Al sustituir en la ecuación (12) se determina ϕK y luego se determina el ángulo entre el radio vector rK y 
el plano (y2, z2) como: 

2ϕϕτ += KK                                                                  (13) 

donde: hhu ϕϕ 22 = . 
El espesor del diente en el arco de radio rx se calcula como: 

Kxx rs τ2=                                                                    (14) 

y la cuerda, que une dos puntos contrarios del diente como: 

 Kxx senrs τ= 2  
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Fig. 7. Esquema para la descripción de la superficie exterior del engrane biparamétrico. 

 

3.2. Determinación del espesor de los dientes en la superficie exterior del engrane  

La determinación del espesor de los dientes en la altura de radio rx se necesita para el control de calidad 
y para el calculo de la holgura en el engranaje; pero en la etapa de la síntesis, para evitar el diente agudo 
hay que determinar el espesor en la superficie exterior. La superficie exterior del engrane biparamétrico 
puede ser obtenida mediante un cilindro generador cuyo eje coincida con el eje zh del engrane generador 
(véase la Fig. 7). Su radio se toma como: 

mxmhrr hahc +−= 2  

donde:  
m es el módulo de engranaje;  

2
h

h
mz

r =  es el radio de referencia del engrane generador;  

ha2 es el factor de altura de cabeza del diente del engrane biparamétrico;  
xh es el coeficiente de desplazamiento del engrane generador respecto al biparamétrico (coeficiente de 

corrección). 
La ecuación de esta superficie se obtiene mediante el empleo del método cinemático [8], según el cual: 

ch
e rMr ⋅= ´22                            (15) 

( ) 0´ 2 =⋅ hVe                      (16) 
( ) 0´ 2 =⋅ hUe                      (17) 

donde  
M2h´ es la matriz de transferencia al sistema de coordenadas S2 del Sh´,  
é  es el vector unitario de la normal a la superficie del cilindro generador de la superficie exterior del 

engrane biparamétrico;  
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( )hV 2  es el vector velocidad relativa en el punto de contacto de las superficies conjugadas con 
constante=γ  (aquí γ es el ángulo de intersección de los ejes del cilíndro generador y de la superficie 

generada);  
( )hU 2  es el vector velocidad relativa en el punto de contacto con constante=ϕ (aquí ϕ es el ángulo de 

giro del cilindro). 
La ecuación del cilíndro de radio rc en el sistema de coordenadas Sh´ tendrá la forma: 

zz
ry
rx

c

cc

cc

=
ϕ=
ϕ=

´
sen´
cos´

                                  (18) 

y la ecuación del vector unitario normal tendrá la siguiente forma: 

0´

sen´
cos´

=

ϕ=
ϕ=

zh

yh

xh

e

e
e

                                         (19) 

Las ecuaciones de las velocidades presentadas en el mismo sistema de coordenadas Sh´ con 
constante=γ  son: 

( ) ( ) ( )
( ) ( )
( ) γ=

ωγ+=

ωγ++γω−ωγ+−=

sen´

cos1´

coscos´cos1´

2
2

2
2

2222
2
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h

z

hhc
h

y

hhhhhchhc
h

x

uxV

uxV

LLuuzuyV
                   (20) 

y con  son: constante=ϕ

( )

( )

( ) ( ) rhc
h

z
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h

y

h
x

LyU

zU

U

ω

ω

−=

−=

=

´

´

0

2

2

2

                                     (21) 

Al tomar ωh=1 rad/s y ωr=1 rad/s y sustituir (19) y (20) en (16) y (17) también (21) en (17) se obtiene: 

( ) 0coscos2 =+ ϕγhLL                                                          (22) 

y 

                                                                   0=z                                                                         (23) 

De las ecuaciones (22) y (23) resulta, que todos los puntos de contacto del cilindro con la superficie ex-
terior del engrane se ubican en el eje y´h a distancia rc desde el eje z´h. La ecuación de la superficie exte-
rior puede expresarse en la forma: 

( )
(
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ϕγ−γ+=

ϕγ−γ+=

sen

coscoscos
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2

222

222

ch
e

ch
e

ch
e

rLz

rLLy

rLLx

)                                            (24) 

En las ecuaciones (24) se observa que la superficie exterior del engrane biparamétrico es la de un toroi-
de. 

Entonces, para determinar la magnitud del espesor de los dientes en la superficie de la cresta, primera-
mente se define el punto de cruce de la normal común n-n con la superficie del toroide mediante: 
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Fig. 8. Variación del espesor de los dientes del engrane biparamétrico  Fig. 9. El engrane biparamétrico hecho para 
con el cambio del ángulo de intersección de los ejes del engrane gene- un manipulador. 
rador con el mismo. 
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y luego se solucionan las ecuaciones (12), (13) y (14). 
En la Fig. 8 se muestran los resultados del cálculo del espesor en la cresta de los dientes del engrane bi-

paramétrico generado con los parámetros siguientes: 
• módulo del engrane m = 1.5mm, 
• ángulo de perfil de la cremallera de referencia α=300, 
• número de dientes del engrane biparamétrico z2=20, 
• factor de altura de cabeza del engrane biparamétrico ha2=1, 
• número de dientes del engrane generador zh=12.  

En la gráfica se aprecia que con el coeficiente de corrección x2=0.45 y x2=0.56 se evita la interferencia 
en todo el rango posible de valores del ángulo de intersección de los ejes: º180º0 ≤δ≤ . 

En la Fig. 9 se muestra el engrane realizado con los parámetros siguientes: módulo del engrane 
m=1.5mm, ángulo del perfil de la cremallera de referencia α=30º, número de dientes del engrane bipara-
métrico z2=20, coeficiente de altura de cabeza de los dientes del engrane biparamétrico ha2=1, número de 
dientes del engrane generador zh=12, coeficiente de corrección del engrane biparamétrico x2=0.56. La 
parte aguda de los dientes del engrane biparamétrico en la superficie cilíndrica, que se nota en la Fig. 9, 
no contradice a los cálculos presentados ya que está fuera del rango de la variación del ángulo de inter-
sección de los ejes y fuera de la superficie de cresta de los dientes. 

El engrane descrito fue empleado en un mecanismo de manipulador para realizar trabajos en un am-
biente radioactivo y químicamente agresivo [2]. En este mecanismo el engranaje está compuesto del en-
grane biparamétrico presentado en la Fig. 9 y el cilíndrico cuyos parámetros son los siguientes: módulo de 
los dientes m=1.5mm, ángulo del perfil de la cremallera de referencia α=30º, número de dientes z1=20, 
factor de altura de cabeza de los dientes ha1=1, coeficiente de corrección xh=0.0. El engranaje indicado 

tiene la relación de transmisión igual a uno: 1
1

2
12 ==

z
z

u  y fue hecho para ejecutar la variación del ángulo 

de intersección de los ejes de las flechas en el rango desde 180º (los ejes de engranajes coinciden) hasta 
75º. El engranaje debe realizar este movimiento con la carga máxima igual a 1 Nm. 
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Fig.10. Banco de pruebas para el ensayo de engranaje       Fig.11. Tallado del engranaje biparamétrico con el uso de una 
biparamétrico de un manipulador.        talladora de engranes. 

En la Fig. 10 está representado el dispositivo para el ensayo a la fatiga del dicho engranaje. Las flechas, 
cargadas con el torque de 1 Nm, repiten el movimiento del brazo del manipulador. El dispositivo realiza 
el movimiento oscilatorio de una flecha respecto a otra y al mismo tiempo el movimiento giratorio uni-
forme de éstas. Con este dispositivo se determina longevidad del engranaje. 

En la Fig. 11 se muestra el proceso de tallado del engrane biparamétrico con el piñón cortador antes 
mencionado. El piñón cortador tiene el movimiento de corte lineal alternativo y el movimiento, junto con 
el engrane, de generación. 

El movimiento de generación consta de dos movimientos independientes: uno giratorio del engrane que 
se genera y del piñón cortador respecto a sus ejes con velocidades angulares correspondientes a la rela-
ción de transmisión y el otro debido a la variación del ángulo de intersección. El trabajo se inicia desde la 
posición con el ángulo de intersección de los ejes igual a 1800 (los ejes del engrane y del piñón cortador 
son paralelos, con este se trabaja la parte interna de la corona dentada). Luego, al dar un giro al engrane 
que se genera respecto a su eje, se variaba discretamente el ángulo de intersección de los ejes. Así, fueron 
obtenidos todos los dientes del engrane biparamétrico hasta la obtención el rango completo del ángulo de 
intersección de los ejes. Por consiguiente no es posible lograr una superficie curva perfecta, sino formada 
con pequeños segmentos de rectas. Pero, ya que el paso discreto fue pequeño los bordes también fueron 
muy pequeños por lo que la exactitud fue satisfactoria. 

4. CONCLUSIONES 

Fue comprobado que en el engranaje de generación (acoplamiento del engrane generador con el gene-
rado) la línea de contacto está en el plano que pasa a través del eje q-q perpendicularmente al eje de rota-
ción del engrane generador. 

Se obtuvo la ecuación de la línea de contacto y las ecuaciones para la determinación de los puntos de 
cruce de la misma con cilindro auxiliar de radio rx. 

Se obtuvo la ecuación de la superficie exterior del engranaje biparamétrico y el método para la determi-
nación de los puntos de cruce de la misma con la línea de contacto. 
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Fue elaborado un método para la determinación del espesor de los dientes del engrane biparamétrico 
tanto en el radio arbitrario rx como en la superficie exterior del engrane. 

Las mediciones del espesor de los dientes del engrane 1 representado en la figura 9 demostraron la co-
incidencia completa con los resultados de los cálculos de éste lo que confirma la validez del método ma-
temático presentado. 

El procedimiento matemático empleado en este artículo puede ser utilizado no solamente para el cálcu-
lo de engranes con la variación del ángulo de intersección de los ejes en un rango grande sino también 
para el cálculo del perfil de los dientes de engranes cilíndricos con dientes hechos en forma de barril para 
engranajes de contacto localizado.  

Estos engranajes también se consideran biparamétricos, pero con la variación del ángulo de intersección 
de los ejes en el rango muy pequeño. 

El material aquí presentado pudiera ayudar a los ingenieros diseñadores de las máquinas para determi-
nar la magnitud óptima de la altura del arco del perfil de los dientes en la dirección longitudinal relacio-
nándola con la deformación del sistema mecánico y condiciones de ensamble en vez de elegirla arbitra-
riamente. 

La aplicación más conocida de éste sería para el cálculo del perfil de los dientes del engrane cilíndrico 
para los acoplamientos dentados. 
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APÉNDICE I: NOMENCLATURA 

aω distancia más corta entre los ejes de rotación de los engranes del biparamétrico y del generador 
he  y 2e  vectores unitarios de las normales a las superficies de los dientes de los engranes de 

generación y biparamétrico, respectivamente 
é  vector unitario de la normal a la superficie del cilindro generador que forma la superficie exterior del 

engrane biparamétrico 
ha2 factor de altura de cabeza del diente del engrane biparamétrico 
m módulo de engranaje 
rbh radio del círculo básico de la rueda dentada generadora 

)(hr  y )2(r  radio vectores de los puntos ubicados sobre las superficies de los dientes de la rueda genera-
dora y biparamétrica, respectivamente 
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uh2 relación de transmisión en el engranaje del engrane generador con el biparamétrico 
zh y z2 número de dientes del piñón cortador (del engrane generador) y del biparamétrico, respectiva-

mente 
( )hU 2  vector velocidad relativa en el punto de contacto de las superficies conjugadas con los ángulos de 

giro de la superficie que se genera respecto al cilindro generador constante=ϕ  y variable=γ  
( )hV 2  vector velocidad relativa en el punto de contacto de las superficies conjugadas con los ángulos de 

giro de la superficie que se genera respecto al cilindro generador variable=ϕ  y constante=γ  
δh ángulo de intersección de los ejes de las ruedas dentadas en el engranaje de generación 
ηh ángulo de engranaje formado por las ruedas dentadas en el engranaje de generación 
α  ángulo del perfil de la cremallera de referencia 
xh coeficiente de desplazamiento radial del engrane generador respecto al biparamétrico, también lla-

mado coeficiente de corrección 
ϕh y ϕ2 coordenadas angulares del engrane generador y del biparamétrico en los sistemas de coordena-

das inmóviles correspondientes 
ωh y ω2 velocidades angulares de los engranes generador y biparamétrico, respectivamente 
ωr velocidad angular del engrane biparamétrico en el movimiento alrededor del eje q-q con respecto al 

engrane generador  

ANALYTICAL DETERMINATION OF THE MORPHOLOGY OF THE TEETH 
OF THE BIPARAMETRIC GEAR 

Abstract – A solution of three theoretical problems of gear drives of two degrees of freedom is shown: calculus 
of the contact line equation of biparametric gear drives, calculus of the external surface equation of the bi-
parametric gear drives, calculus of the tooth thickness of biparametric gear drives. The definition of a type of in-
terference in the surface of the tooth crest, which yields in tooth sharpness, is given. The results of calculating 
the tooth thickness in the addendum of biparametric gear drives are presented. The material is entered with indi-
cation and terminology corresponding to the Norms ISO. 

Keywords – Theory of gears, Spatial gears, Interference in the biparametric gears. 
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