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Resumo – Neste artigo apresenta-se um método de simulação de escoamentos bidimensionais com superfície 
livre, usando uma técnica de resolução totalmente acoplada das equações de Navier-Stokes, adaptada às malhas 
estruturadas e não estruturadas, e uma técnica de captura de interface de tipo "Volume of Fluid" (VOF). O mé-
todo de resolução totalmente acoplado consiste em resolver um só sistema linear em velocidade e pressão. Este 
método revela-se robusto e eficaz na simulação de escoamentos não estacionários. A técnica de captura de inter-
face VOF revela-se adaptada na simulação de deformadas complexas da superfície livre entre dois fluidos.. 

Palabras clave – Método de resolução totalmente acoplado, escoamentos com superficie livre, Volume of 
Fluid, malha não estruturada. 

1. INTRODUÇÃO 

A simulação dos escoamentos com superfície livre é um domínio da Mecânica dos Fluidos que se 
iniciou apenas há trinta anos. Foram desenvolvidos vários métodos durante este período. 

O primeiro método, em fluidos perfeitos, é baseado na teoria potencial. A superfície livre representa 
uma fronteira do domínio de cálculo onde as condições de superfície livre são impostas. O método é par-
ticularmente interessante, mas limitado ao domínio oceânico, às aplicações onde os efeitos viscosos são 
desprezáveis e aos escoamentos sem rebentação. 

Com o aumento do potencial computacional e com o desenvolvimento das técnicas numéricas, foi en-
tretanto possível simular os escoamentos viscosos com superfície livre. Dois métodos apareceram: o mé-
todo "front capturing interface" e o "front tracking interface". 

No método "front tracking interface", a superfície livre é uma fronteira do domínio de cálculo na qual 
são aplicadas as condições de superfície livre. Geralmente, estes métodos permitem obter resultados 
precisos, e estão já muito desenvolvidos [1]. A limitação principal desta técnica está ligada à impossibili-
dade de representar o fenómeno de rebentação que aparece na maioria dos escoamentos reais. 

O método "front capturing interface" tem como objectivo resolver configurações de superfície livre 
com topologias complexas. Esta técnica permite simular o fenómeno da rebentação, de conexões de 
superfície livre, e também dos escoamentos multi-fluidos. Neste método, a superfície livre não é uma 
fronteira do domínio, sendo representada através dum marcador ligado à própria superfície livre, por 
exemplo o método MAC [2], ou um indicador de presença variando no domínio de cálculo. Nesta ultima 
técnica, as características locais do fluido são determinadas através deste indicador, e a convecção desta 
variável permite localizar a superfície livre, ou a interface, entre os fluidos. Este indicador é definido no 
domínio de cálculo, sendo a posição da superfície livre identificada por um iso-valor deste indicador. Nos 
métodos "Level Set" [3] e "Volume of Fluid" [4], este indicador é definido usando respectivamente uma 
estimação da distância à superfície livre ou uma taxa de presença no domínio dos fluidos existentes. 

O presente trabalho consiste simular escoamentos viscosos com grandes deformações de superfície li-
vre, particularmente casos envolvendo escoamento de agua. Usa-se em conjunto, um método de tipo 
"front capturing interface", o método "Volume of Fluid" VOF, e um método de resolução das equações de 
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Navier-Stokes totalmente acoplado em velocidade e pressão, para malhas estruturadas e não estruturadas. 
A discretização das equações e a construção do modelo numérico apoiam-se no método de volumes fini-
tos [5, 6]. O método de resolução totalmente acoplado apresenta-se atractivo e original [7, 8], sendo tam-
bém uma alternativa aos métodos padrões não acoplados, como o método SIMPLE. A principal vantagem 
do método consiste no aumento da robustez ligada ao tratamento implícito e global de acoplagem 
velocidade-pressão. Permite ainda uma convergência rápida dos resíduos não lineares tornando-se uma 
técnica atractiva nas simulações de escoamentos não estacionários. O método de resolução totalmente 
acoplado revela-se preciso e eficaz, como foi demonstrado para os escoamentos em torno de cilindros 
circulares isolados [9, 10]. 

2. MODELO FÍSICO 

As equações de Navier-Stokes, para um escoamento laminar, são escritas numa forma conservativa 
num espaço cartesiano (O, x1, x2). As variáveis são as componentes cartesianas da velocidade (u1, u2), a 
pressão p, a densidade ρ e a viscosidade dinâmica μ. As equações de quantidade de movimento na forma 
não dimensional escrevem-se, 

∂ ρ
∂

∂ ρ
∂

∂
∂

μ ∂
∂

∂ μ
∂

∂
∂

ρu
t

u u
x

p
x

u
x x

u
x Fr

g
g

i i j

j i

i

j j

i

j

i+ = + + +
Re Re

2

2 2

1
                    (1) 

A equação da continuidade na hipótese de fluido incompressível escreve-se,  
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Define-se a fracção de fluido c que representa a taxa de presença do fluido 1 no domínio de cálculo 
(Fig. 1). O valor c=1 caracteriza um volume de controlo onde há unicamente o fluido 1, o valor c=0 
indica que o elemento contém apenas o fluido 2. O valor médio c=0.5 permite identificar a posição da 
superfície livre. A equação de transporte da fracção de volume escreve-se, 
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Se o fluido de referencia (ρo, μo) é considerado como o fluido o mais denso, e se (ρ1, μ1) e (ρ2, μ2) são 
as características físicas dos dois fluidos, define-se ρ e μ no domínio de cálculo fluido usando as seguin-
tes relações não dimensionais, 
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Fig. 1. Repartição da fracção de volume. 
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O número de Reynolds e o número de Froude são definidos pelas relações, 
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Uo e Lo representam uma velocidade e um comprimento característicos, g a aceleração da gravidade, e 
(ρo, μo) as características do fluido de referência. 

3. DISCRETIZAÇÃO E RESOLUÇÃO DO SISTEMA DE EQUAÇÕES 

As equações (1), (2) e (3) são integradas em cada volume de controlo. As integrais de volume são 
transformadas em integrais nas superficiais do volume de controlo. Assim é necessário de definir os 
fluxos convectivos e viscosos da equação de quantidade de movimento tal como a pressão às interfaces 
entre elementos. Para a equação de continuidade e o termo de convecção da equação de conservação da 
fracção de volume, os fluxos são calculados nas interfaces do volume de controlo. Os outros termos são 
directamente integrados no volume do elemento. 

3.1. Notações Equações discretas 

Utiliza-se para a discretização das equações o método dos volumes finitos em conjunto com uma 
localização "collocated cell-centered" das incógnitas: as incógnitas são localizadas no centro do volume 
de controlo. As principais notações envolvidas no processo de discretização são apresentadas na Fig. 2. 

O volume de controlo central e os vizinhos são indicados por C e Nb. Cada volume de controlo é 
definido pelo seu volume, VC, e pelo número nb de interfaces de superfície Snb. O centro da interface nb é 
indicado por Mnb. Para malha não ortogonal, este ponto pode ser diferente do ponto de intersecção entre 
os centros das células e a interface, induzindo uma perda de precisão no cálculo do integral discreto. A 
precisão de segunda ordem é conservada se o integrante for estimado no centro da interface. Neste caso, 
introduz-se uma estimação dos valores à direita e à esquerda da interface, nos pontos C' e Nb', realizando 
assim a interpolação no centro da interface. 

3.2. Esquemas de discretização 

A implementação do método totalmente acoplado implica a resolução dum sistema linear complexo. 
Assim é necessário considerar esquemas de discretização implícitos compactos, envolvendo só os 
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Fig. 2. Molécula de discretização e notações. 
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volumes de controlo adjacentes ao volume de controlo central, conservando ao mesmo tempo uma 
precisão de segunda ordem. 

Estima-se o termo de tempo usando um esquema implícito de segunda ordem a três níveis em tempo. 
Uma interpolação linear implícita, envolvendo os dois elementos adjacentes à interface, permite 

determinar um valor Φnb na interface do volume de controlo. Quando a malha é não ortogonal, são 
adicionadas correcções para definir Φnb no centro da interface. Estas contribuições explícitas são 
pequenas em comparação com as outras, se a não ortogonalidade da malha for também pequena. A 
interpolação linear escreve-se na forma seguinte, onde o superscript expl indica uma contribuição 
explícita: 
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Usa-se o esquema CDS, "Central Differencing Scheme", para estimar os gradientes nas interfaces. O 
esquema compõe-se duma parte implícita, envolvendo os dois elementos adjacentes à interface, 
adicionada a correcções explícitas se a malha for não ortogonal. 
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O termo convectivo é discretizado através do esquema "deferred correction", Khosla & Rubin [11]. Esta 
técnica permite obter soluções precisas usando esquemas de ordem elevada, sem introduzir dificuldades 
na resolução do sistema linear. A ideia consiste em dividir o termo convectivo numa parte implícita, 
escrita através dum esquema de primeira ordem L1, e numa parte explícita, igual a diferença entre um 
esquema de ordem elevada, L2, e o esquema de primeira ordem, L1. 

 

( )φ ωφ φ φ
nb

DC

e xpl
L L L= + −1 2 1

 (9) 

O método totalmente acoplado não necessita de introdução de difusão numérica, e consequentemente 
ωdc=1. Quando a convergência não linear é obtida, a estimação do termo convectivo é da ordem do 
esquema L2. 

No âmbito do método totalmente acoplado, usa-se o esquema de primeira ordem UDS, "Upwind 
Differencing Scheme". 

O esquema de terceira ordem WACEB, "Weighted-Average Coeficient Ensuring Boundedness", Song et 
al. [12], é utilizado para o operador L2. 

3.3. Equações discretas 

Com os esquemas precedentes, a equação de quantidade de movimento integrada num volume de 
controlo escreve-se na forma discreta seguintes: 
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onde sui  é um termo fonte que reagrupa as contribuições explícitas dos diferentes esquemas. 
A velocidade (ui)C pode ser considerada como a soma duma pseudo-velocidade (ui*)C e dum gradiente 

de pressão, Prakash & Patankar [13]. Assim, a equação discreta de quantidade de movimento escreve-se: 
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A pseudo-velocidade reagrupa as contribuições dos termos explícitos, do termo fonte e dos termos 
extra-diagonais dos esquemas convectivos e difusivos. 

A partir da forma discreta da equação de continuidade, e substituindo a velocidade pela relação 
(11), a conservação da massa exprima-se através das pseudo-velocidades e da pressão. Obtém-se 
assim uma equação discreta de pressão. Usa-se uma técnica de reconstrução de Rhie & Chow [14] 
para estimar os fluxos de gradiente de pressão nas interfaces do volume de controlo. 
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As diferentes equações discretas, de quantidade de movimento, de pseudo-velocidade e de pressão, são 
escritas sob a suas formas simbólicas: 
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G é o operador gradiente, C reagrupa os coeficientes dos esquemas de convecção- difusão fora da 
diagonal e D é o operador divergência. S reagrupa os termos fontes e a parte explícita dos esquemas de 
discretização. 

3.4. Método Volume of Fluid 

O método VOF é baseado na convecção duma fracção de volume [4]. A principal vantagem é a 
facilidade obter a posição da superfície livre resolvendo apenas uma equação de transporte. No entanto é 
necessário estimar os fluxos convectivos usando esquemas de discretização que permitem conservar as 
propriedades do campo da fracção de volume: 

• valores limitados de c, 0<c<1, que constitui o critério "Convection Boundedness Criterion", 
CBC [15], 

• zona de transição fina entre os fluidos para conservar o carácter não miscível dos fluidos, 
• minimizar a difusão numérica das não continuidades e conservar a estabilidade numérica. 

Usa-se para a discretização da equação (3) um esquema Euler explicito. 
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O esquema de discretização para o termo de convecção é determinante neste tipo de método. Não se 
pode usar o esquema "Central Differencing Scheme" pois o critério de CBC não é verificado. Os outros 
esquemas, como o esquema "Upwind" de primeira ordem, são demasiadamente difusivos introduzindo 
uma mistura artificial dos dois fluidos. A solução é adoptar os esquemas designados por "High Order 
Mixing Scheme", que permitem eliminar as oscilações não físicas, verificando os critérios indicados. 
Estes esquemas apoiam-se na técnica de "Normalized Variable Diagram", NVD: HRIC de Peric [16], 
CICSAM de Ubbink [17] ou Gama de Jasak [18]. São classicamente escritos recorrendo a variáveis 
normalizadas que permitem representar num diagrama NVD a fracção de volume normalizada ~cnb  na 
interface do elemento em função da fracção de volume normalizada ~cC  do elemento central. 

De maneira geral, é possível determinar a fracção de volume normalizada no diagrama NVD através da 
relação seguinte [15], 
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Os índices U e D designam respectivamente o nó a montante e jusante do nó central C (Fig. 3). Assim o 
valor de cnb na interface está necessariamente compreendido entre os valores de cU e cD, o que permite 
suprimir as oscilações não físicas. No diagrama NVD, este condição exprima-se pela relação 0 1≤ ≤~cC  
que verifica o critério CBC. O valor de cnb é determinado em função. 

Adopta-se neste trabalho o esquema Gama proposto por Jasak [18], representado no diagrama NVD na 
Fig. 4. O esquema mais adaptado é seleccionado em função do valor de ~cC  : 

• para ~cC < 0  e ~cC > 1 o critério CBC indica que se deve usar o esquema UDS. 

 
~ ~c cnb C=  (18) 

• se βm Cc≤ ≤~ 1 , usa-se o esquema CDS. Outros esquemas de ordem superior poderiam ser 
utilizados, mas para malhas não estruturadas este esquema revela-se suficiente (Jasak [18]). 
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• se ~cC m< β , adopta-se uma combinação entre o esquema UDS e CDS usando o parâmetro de 
ponderação γ. Para γ = 0 (ou ~cC = 0) usa-se o esquema UDS e para γ = 1 (ou ~cC m= β ) o 
esquema CDS. O factor de ponderação do esquema Gama é definido por, 
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O valor recomendado por Jasak [18] é βm = 0.2.  
A resolução explicita da equação de transporte de fracção de volume impõe determinar um critério de 

limitação do passo de tempo através do número de Courant, 
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Para assegurar a convergência, Nc deve tomar um valor baixo inferior a aproximadamente 0.1. 
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Fig. 3. Perfil típico de fracção de volume c. 
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Fig. 4. Esquema Gama no diagrama NVD. 
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3.5. Método de resolução totalmente acoplado das equações de Navier-Stokes 

O único sistema linear totalmente acoplado em velocidade e pressão escreve-se reagrupando as 
equações (13), (14) e (15): 
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sendo I a matriz identidade. 

A matriz deste sistema linear é muito esparsa, não simétrica, com grande dimensão e o seu 
condicionamento é elevado, particularmente para o bloco de pressão DG. É assim necessário usar um 
algoritmo iterativo de resolução. O algoritmo BiCGSTAB-ω, Sleijpen and Van Der Vorst [19], associado 
a um pré-conditionamento LU apresente-se como a melhor estratégia de resolução. A utilização do 
algoritmo precedente permite obter um método de resolução totalmente acoplado robusto. Em oposição 
aos métodos segregados, como SIMPLE, Issa [20], ou PISO, Patankar [21], onde as equações discretas são 
resolvidas sequencialmente, o método totalmente acoplado resolve um único sistema linear, permitindo 
obter a solução do campo de velocidade e de pressão simultaneamente. Contrariamente aos métodos 
segregados, a técnica de acoplagem total entre velocidade e pressão não requer etapa de correcções, 
parâmetros de relaxação ou outros tipos de tratamentos para garantir a convergência. 

A acoplagem entre a velocidade e a pressão permite simular com eficiência os fenómenos não-lineares, 
particularmente importantes na simulação de escoamentos não estacionários. A técnica de resolução induz 
igualmente uma aceleração da convergência dos resíduos não-lineares. Uma redução dos resíduos de 5-6 
ordens é obtida em 4-6 iterações não-lineares. Em comparação, os métodos segregados, no mesmo 
número de iterações, permitem uma redução de apenas uma a duas ordens. 

A convergência do método totalmente acoplado é analisada no caso da simulação do escoamento em 
torno dum cilindro circular, para um número de Reynolds, Re=300. Usa-se uma malha de tipo "O" que 
tem as características seguintes: 200 e 165 nós nas direcções angular e radial respectivamente, o primeiro 
nó situado a 10-3D da parede. O passo de tempo é dt=10-2. As Fig. 5, Fig. 6a e Fig. 6b representam a 
evolução da convergência relativa ao tempo não dimensional t=150. A Fig.5 monstra a convergência do 
resíduo normalizado na resolução do sistema linear totalmente acoplado durante o processo não-linear, 
para um critério de convergência tolc=10-3 (indicado pela linha descontinua). Este resíduo é definido pela 
relação seguinte:  
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rC indica o resíduo normalizado, RC o resíduo e RCO o resíduo inicial.  
Nas Fig. 6a e Fig. 6b, representam-se o número de iterações necessárias para a resolução do sistema 

linear e o comportamento dos resíduos não-lineares. Os resíduos não lineares de velocidade e pressão são 
definidos, usando uma notação igual à precedente: 

 
r

R

R
tolC

u C
u

CO
u C

u= ≤ , e r
R

R
tolC

p C
p

C
p C

p= ≤          (25) 

No início do processo não linear, são necessárias 27 iterações para resolver o sistema linear, como se 
pode ver nas Fig. 5 e Fig. 6a. Observa-se igualmente, durante esta primeira iteração, uma redução muito 
forte dos resíduos (Fig. 6b). Com efeito, esta etapa corresponde à principal fase de resolução das não 
linearidades, onde os resíduos são reduzidos da ordem de grandeza 0 para a ordem 3-4. Depois, na 
segunda iteração não linear, o sistema linear é resolvido em dez iterações. É apenas necessária uma 
iteração após a quinta iteração não linear, como é observável na Fig. 6a. O resíduo normalizado do 
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sistema linear fica inferior ao critério de convergência desde a primeira, e única, iteração (Fig. 5). Este 
comportamento corresponde a uma estagnação dos resíduos não lineares, ilustrado na Fig. 6b. Assim, 
nota-se que em só duas iterações não lineares, os resíduos normalizados de velocidade e de pressão são já 
da ordem de 10-4. Os métodos segregados necessitam, para alcançar esta precisão, de um número 
substancialmente superior de iterações. Este análise confirma a robustez e rapidez do método totalmente 
acoplado. 

4. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS OBTIDOS 

Apresentam-se escoamentos onde a deformação da interface entre os dois fluidos é complexa. A 
primeira simulação numérica, modelando as instabilidade de Rayleigh Taylor, permite verificar o 
comportamento do modelo desenvolvido. As aplicações seguintes, cada vez mais extremas, demonstram a 
validade e a eficácia do presente modelo. 

4.1. Instabilidades de Rayleigh Taylor 

Foram Rayleigh e Taylor que iniciaram o estudo deste fenómeno. Este escoamento desenvolve-se 
quando o equilibro instável de dois fluidos sobrepostos de densidade diferente rompe-se, estando o fluido 
mais denso por cima do fluido mais leve. Observam-se características diferentes no escoamento em 
função da diferença de viscosidade cinemática e de densidade. As características físicas da simulação são: 
o fluido mais denso ocupa a metade superior da cuba e tem densidade 1.225 kg/m3, o outro fluido tem 
densidade 0.1694 kg/m3. A viscosidade dinâmica é igual a 0.0013 kg.m-1.s-1. O escoamento desenvolve-se 
dentro dum tubo rectangular vertical, 1 por 4 m. 

 

0 10 20 30 40 50
Iteracao

10-3

10-2

10-1

R
es

id
uo

no
rm

al
iz

ad
o

∼,  

Fig. 5. Convergência do resíduo do sistema linear totalmente acoplado, Re=300, t=150. 
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Fig. 6. Convergência para Re=300, t=150; (a) número de iterações necessário na resolução do sistema linear para cada itera-
ção não-linear; (b) convergência dos resíduos não-lineares. 
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Esta simulação revela-se relativamente fácil não obstante as importantes deformações da interface entre 
os dois fluidos, pois a diferença de densidade é apenas de uma ordem de grandeza induzindo assim uma 
variação pequena nos gradientes de pressão na zona de transição dos fluidos. 

Foram utilizadas duas malhas estruturadas, ST1 e ST2, com (32x128) e (64x256) elementos, e duas ma-
lhas não estruturadas DES1 e DES2, com 6840 e 27100 elementos. Compara-se na Fig. 7 a posição do 
ponto mais abaixo de fluido pesado em relação à sua posição inicial, ou seja a frente da bolha do fluido 
mais pesado (ver Fig. 8), com os resultados de Puckett [22], para as quatro malhas. Observa-se a 
convergência dos resultados com o refinamento da malha e um bom acordo entre os resultados obtidos 
com as malhas ST2 e DES2. Uma pequena diferença aparece nestes resultados, nomeadamente após 0.9s. 
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Fig. 7. Posição de frente da bolha do fluido mais denso. Convergência da malha. 
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Fig. 8. Instabilidade de Rayleigh Taylor. Evolução do escoamento no tempo: da esquerda à direita, t=0.5s; t=0.7s; t=0.9s, 
t=1.1s; t=1.3s; t=1.5s.  
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No entanto, os resultados para as duas malhas finas, ST2 e DES2, ficam coerentes e em bom acordo com 
os resultados de Puckett. 

Na Fig. 8, apresenta-se o escoamento, para à malha ST2, em 6 tempos diferentes, entre o tempo 0.5s e 
1.5s. Observa-se a reduzida dimensão da zona de transição, composta por apenas 5 a 6 elementos, o que é 
muito satisfatório para um método sem reconstrução de interface. 

4.2. Queda duma coluna de água numa cuba aberta 

A queda duma coluna de água apresenta grandes e complexas deformações da superfície livre e é um 
simulação clássica na validação dum código numérico. Três configurações são apresentadas, 
apresentando cada vez um escoamento mais complexo:  

• a queda simples duma coluna de água numa cuba aberta, nesta secção, 
• a queda duma coluna de água numa cuba vazia, na secção seguinte, 4.4, 
• a queda duma coluna de água numa cuba com um obstáculo no chão, na secção 4.5. 

A cuba tem um comprimento grande, a coluna de água tem as seguintes dimensões, 2a=0.292m de 
altura e a=0.146m de comprimento. São utilizadas duas malhas não estruturadas constituídas por 8200 e 
22000 elementos respectivamente a malha grosseira e fina. 

Nas Fig. 9 e Fig. 10 observa-se a evolução da posição da superfície livre na parede esquerda da cuba, b, 
e a posição da frente da superfície livre no chão da cuba, l. Observa-se uma muito boa concordância entre 
os resultados numéricos e experimentais de Martin and Moyce [23], particularmente para a elevação de 
superfície livre na parede. Parece que com malhas mais finas a posição da frente do escoamento é 
estimada com menor precisão. No entanto os autores indicam a dificuldade em obter experimentalmente a 
posição da frente do escoamento, de mais difícil identificação que a altura de água na parede esquerda. 

4.3. Queda duma coluna de água numa cuba fechada 

A cuba tem um comprimento de 4a=0.584m, a coluna de água no lado esquerdo tem 2a=0.292m de al-
tura e a=0.146m de comprimento. As duas malhas não estruturadas são constituídas por 3700 e 7500 ele-
mentos, respectivamente para a malha grosseira e fina. 

As Fig. 11.a até Fig. 11.f permitem comparar os resultados numéricos da deformação da superfície livre 
com os obtidos experimentalmente por Koshizuka [24] para 6 tempos, 0.0s, 0.2s, 0.4s, 0.6s, 0.8s e 1.0s. 
Na generalidade pode constatar-se uma boa concordância entre as fotografias e as simulações. Na Fig. 
11.b, para o tempo t=0.2s, a água ocupa 75% do chão e aparece uma língua fina na parte frontal do esco-
amento. Para o tempo t=0.6s, a água atingiu a parede direita tendo iniciado o seu movimento vertical nes-
ta parede. Junto ao chão observa-se uma boa concordância relativamente à posição horizontal da superfí-
cie livre e à camada fina de fluido. A camada de fluido na parede direita é também coerente com os resul-
tados experimentais.  
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Fig. 9. Posição da superfície livre na parede esquerda. 
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Após à acção da força dinâmica responsável da subida da água, inicia-se o fenómeno de rebentação de-
vido ao efeito da força da gravidade. No instante t=0.8s, Fig. 11e, aparece a primeira rebentação. No ins-
tante t=1.0s, Fig. 11f, uma língua de água é impelida para parede esquerda ficando uma bolha de ar apri-
sionada pela água. 

Pode-se constatar que o método numérico revela-se satisfatório na simulação deste tipo de escoamento, 
pois embora a transição apresenta-se fina, não há excesso de difusão. 

4.4. Queda duma coluna de água numa cuba com um obstáculo 

As dimensões da cuba e da coluna de água são iguais às do caso precedente. O obstáculo está situado à 
distância de 2a da parede direita, a=0.146m, tem 2d de altura e d=0.024m de comprimento. Comparam-se 
para seis instantes, na Fig. 12, as deformações da superfície livre calculadas numericamente com fotogra-
fias do escoamento da coluna de água, únicos resultados experimentais disponíveis [24]. Observa-se uma 
boa concordância entre as simulações e os dados apesar da complexidade do escoamento e das grandes 
deformações da superfície livre:  

• nas Fig. 12b e Fig. 12c, correspondente ao tempo 0.1s e 0.2s, observa-se uma boa concordância 
entre os resultados numéricos e as fotografias na forma da superfície livre, antes e logo depois o 
impacto com o obstáculo, 

• na língua de água impelida após o impacto no obstáculo em direcção da parede direita e na 
forma característica da superfície livre à esquerda do obstáculo, para o tempo t=0.3s (Fig. 12d), 

• no impacto na parede direita e na forma horizontal típica da superfície livre à esquerda do obs-
táculo para o instante t=0.5s, Fig. 12e. 
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Fig. 11. Queda duma coluna de água numa cuba: comparação da deformação da superfície livre entre a 
simulação numérica e a experiência: (a) t=0.0s; (b) t=0.2s; (c) t=0.4s; (d) t=0.6s; (e) t=0.8s; (f) t=1.0s 
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Efeitos dinâmicos importantes estão associados ao escoamento apresentado. Assim, mesmo para uma 
grande diferença entre a densidade dos fluidos que induz gradientes de pressão fortes, a zona de transição 
fica fina ao longo da simulação. 

5. CONCLUSÕES 

O método de resolução numérica totalmente acoplado associado ao método de "interface capturing" 
VOF, aqui desen 

volvido para malhas estruturadas ou não estruturadas, revela-se adaptado para simular escoamentos que 
apresentam deformações importantes da superfície livre e uma dinâmica rápida. A zona de transição é 
composta apenas por 5 ou 6 elementos, assegurando assim uma boa representação da evolução da 
superfície livre.  

Foi modelado escoamentos complexos que permitem considerar, a curto prazo, aplicações para 
problemas complexos de interesse práticos e de engenharia. 
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BREAKING FREE-SURFACE FLOW NUMERICAL SIMULATIONS 

Abstract – Simulations of complex free-surface flow are presented using a solver based on the following meth-
ods. A fully coupled resolution method is developed to resolve the Navier-Stokes equations. A finite-volume 
approach, adapted to structured and unstructured meshes, is used. With this method, only one linear system in 
velocity-pressure is solved. The free surface is simulated by the "Volume-Of-Fluid" interface capturing method. 
This global approach allows the simulation of complex flows, like breaking waves. 

Keywords – Fully coupled resolution method, Free surface flow, Volume of fluid, Unstructured mesh 

 


