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Resumen — El problema de vibraciones libres de placas con presencia de rétulas elasticamente restringidas y si-
tuadas en puntos intermedios, es de interés en ciertas aplicaciones de la ingenieria. Una linea intermedia con
rétulas en una placa, puede ser usada para facilitar la apertura de puertas, la plegadura de portones y para simu-
lar ciertas fracturas. La presencia de las rdtulas genera condiciones cuyas expresiones analiticas son analogas a
las de las condiciones de contorno y complican notablemente la resolucién, tanto analitica como numérica, de
los problemas correspondientes. Es importante notar que no existen estudios en la literatura, del problema de
vibraciones libres de placas gruesas elasticamente restringidas en sus contornos y que ademas posean rétulas in-
termedias restringidas elasticamente. El objetivo de este trabajo es la obtencion, mediante las técnicas del calcu-
lo de variaciones, de los problemas de contorno que describen el comportamiento estatico y dinamico de placas
con una linea intermedia con rotulas. En el estudio se consideran placas laminadas moderadamente gruesas mo-
deladas mediante el uso de la teoria de primer orden, la cual permite tener en cuenta los efectos de la inercia ro-
tatoria y de las deformaciones transversales por corte. El uso de la teoria mencionada permite obtener mayor
precision en la determinacion de los coeficientes de frecuencia y los modos superiores de vibracion, con respec-
to a los proporcionados por la teoria clasica de placas.
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1. INTRODUCCION

La denominada teoria de placas de primer orden, conocida por sus siglas en inglés FSDT, extiende la
cinematica de la teoria clasica de placas (CLPT), incluyendo una deformacion transversal por corte cons-
tante en el espesor de la placa. Ademas, la teoria FSDT, incorpora los efectos de la inercia rotatoria. El
efecto més significativo de incluir las deformaciones transversales por corte, se observa en la prediccion
de los valores de las deflexiones, frecuencias de vibracién y cargas de pandeo. Es conocido que la teoria
clasica de placas predice valores numéricos de las deflexiones menores que los exactos y en cambio, pro-
duce valores superioores para las frecuencias y las cargas de pandeo, cuando las placas poseen una rela-
cion largo-espesor aproximadamente menor o igual a 20. Por esta razdn es necesario el uso de una teoria
de orden superior para el andlisis de placas que son relativamente gruesas.

Existe una gran cantidad de textos y trabajos de investigacion sobre la obtencién, mediante el célculo de
variaciones, de las ecuaciones diferenciales y las condiciones de contorno que describen el comporta-
miento estatico y dinamico de placas [1-5]. No obstante, todas estas obras tratan el caso de placas isétro-
pas y contornos con apoyos clasicos, es decir simplemente apoyados, rigidamente empotrados y libres. En
las referencias [6,7] se trataron problemas de placas anisétropas restringidas elasticamente y con contor-
nos que poseen puntos angulosos. Por otro lado, existe una cantidad limitada de trabajos que contemplan
la presencia de lineas intermedias con rotulas en una placa [8-12]. Por ello, el objetivo fundamental de
este trabajo es obtener las ecuaciones gobernantes, las condiciones de contorno, y las condiciones de tran-
sicién, que gobiernan el comportamiento estatico y dinamico, de acuerdo con la teoria FSDT, de una pla-



42 M.V. Quintana, R.O. Grossi

ca anisétropa de forma arbitraria, con contornos elasticamente restringidos y con una linea intermedia con
rétulas restringidas contra rotacion y traslacion.

2. COMPONENTES DE LAS ENERGIAS DE LA PLACA

Sea una placa moderadamente gruesa de material con contornos elasticamente restringidos contra rota-
cién y traslacion y con una linea intermedia con rétulas también restringidas elasticamente, tal como se
observa en la Fig. 1. Se supone que la placa estd sometida a cargas perpendiculares al plano medio y esta
constituida por un apilamiento de capas ortétropas, de forma tal que en conjunto forman un esquema de
laminacion simétrico con respecto al plano medio. Dada la existencia de la linea de rotulas, el contorno

OR de la placa, queda dividido en las curvas TV y T®  donde ' = 9R" —T'“ i =1,2 y donde la
curva I') = {(c,x,) € R} es la parte comin a los contornos 9R" y dR™ . En vista de lo anterior, se
supone que, las restricciones rotacionales estdn  caracterizadas por las  funciones
) =cli ( ) VseTW i=12yporc, =c, (s),Vs € Ty en forma anéloga, las restricciones tras-

lacionales estan definidas por las funciones ¢} = ! ( ) y ¢ =Y (s)

Los desarrollos siguientes se basan teniendo en cuenta las hipétesis cinematicas de la teoria FSDT [13].

2.1. Energia de deformacion de la placa

De acuerdo con las hipétesis establecidas anteriormente, la energia de deformacion por flexion trans-
versal de la placa descrita, se puede expresar de la siguiente manera:

Z ff l ; [% 06, ) o 90 99,

oz, 2 o, 8:1:2

2

+D)

(09, 09, 09, 09, op, 0¢, 0¢, 09,
+2 .Dl((])) ¢1,1 ¢1,1 + ¢Ll ¢L2 + 2 D(é ) ¢1,2 ¢.1,l + gb@ gb@ +
Oz, Oz, Ox O, Oz, O, 8x2 Oz, 1)
(90,) 00, 96, (06, ) ow| | ow :
+D =] +2——= | == [+ AY +2—¢, +¢ |+
o [81’2] dz, Oz, oz, Y\ 0, oz, b T2
0| 0w Ow ow
+24) | ——+ ~ 4 + —| +2=—0¢, +¢’ |{dz, dz,
® [8:1:1 o, ¢I‘ (9 ¢“ oz, d)x'%] 4 [ 331] o, Pt ] .

donde D = D" (2,,),AY = A (2,,2,)k =1,2, son las rigideces flexionales y extensionales de la
placay estan dadas por:

h/2
ij 17 2 f QZ] 3 3’ 1) = 17273a ( )
—h/2
T 3)
AI(J]§> (1'1,.7)2) = Kf Qi(jr)dxm Z:J = 47 57
7)1/2

con h = h(z,,z,) y donde K es el factor de correccion por corte, el cual permite tener en cuenta la dife-
rencia entre las fuerzas de cortes reales y las proporcionadas por la teoria FSDT. Ademas @fj” denota a

los elementos de la matriz constitutiva de la capa r del laminado simétrico, w = w(z,,,,¢) denota la
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deflexion transversal de los puntos del plano medio de la placa y las funciones ¢, = ¢, (z),2,,t) Y

¢,

respectivamente.
Dado que el dominio de la placa esta dividido la funcion w se define como:

= ¢, (z,,z,,t) denotan las rotaciones de la seccion transversal alrededor de las coordenadas z, y z,

w (;rl,:vQ,t), V(;rl,:vQ) e RV

w(x,,T,, 1) = —
( v ) w? (:vl,xQ,t),V(:vl,x2)€R(2>
De igual forma se definen ¢, = o, (,,7,,t) Y ¢, = ¢, (2,,7,,1).

2.2. Energia de deformacidn de los vinculos rotacionales y traslacionales

La energia de deformacién total asociada a los vinculos elasticos descriptos estan dadas por:

Z [ e ¢, ds + f e, (@, (¢",38) = b, (¢m,,8) ds, "
EN () 2 1 (e) 2
:EZ;fFW ¢y () wds +§fpm e\ () wids, (5)

donde ¢* y ¢~ denotan los limites laterales la rotacién de un punto en la coordenada normal n
n

2.3. Energia cinética de la placa

La energia cinética para cualquier instante ¢, cuando se tiene en cuenta el efecto de la inercia rotatoria
y cuando la placa es homogénea, se define mediante la expresion [13]:

owf . o[(06.)  (94,) (6)
fo D) [_at HED]
donde,
h/g ):/2 1 (7)
7h/2 7/1/2

2.4. Energia potencial de las cargas exteriores

La energfa potencial debida a una carga transversal ¢ = ¢(z,,,,t) que actda sobre R, en un instante ¢
estd dada por:

18 ;
V= _E;ILW q" ($1,x2,t)wdx1d$2, (8)

con
q(l) (l'lvxmt)a v(xlva) € R(l)a

T, Ty ) = —
q( A ) q<2)(:v1,x2,t),V(:v1,x2)GR(2>.
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3. VARIACION DEL FUNCIONAL DE ENERGIA

El Principio de Hamilton requiere que entre los instantes de tiempos ¢, y t,, en los cuales la posicion
del sistema mecénico es conocida, se produzca un movimiento que haga estacionario el funcional

h . . .. . .
F = I1dt, en el espacio de las funciones admisibles, donde II es el Lagrangiano correspondiente

)
yestadadopor 1 =7 -V -U -U, - U,  [5]
Si se aplica el Principio de Hamilton y luego se reemplazan las expresiones para las distintas energias
que intervienen en el funcional II y que estan dadas por (1), (4)-(6) y (8), resulta:

ow M(og. Y (06, Y (8¢, )
it i Ty ) _D(Z) L
el )5 [ SO (2] 0 2] o[22
NG NG oo O
Dy 90 —2D}) 99, 0%, - 2D} % 99, + % 00, |
oz, Oz, O, Oz, Oz, Ox, Oz,
(06 8p. D¢ O (89, ¥ 8¢, 86, (06 Y
_2 Dz(é) QZSJQ QZSJ,I + QZSJQ QZSJQ o D(();) ¢zl +2 (Vbll QZSJQ + ¢z2
oz, Oz, Oz, Ox, oz, Oz, Oz, Ox, )
2
S Ow ow ow (9w
—A || —| +2——0, +¢] |24} | — w44 0wy
“ [81:2] o, O + 9, ¥\ 9z, 0z, o o, % oz, O,
—AY a—w +26—w¢ + ¢ |+ ¢"w|dz,dz, —
ox, oz,

[ e [ @~ [ o0 ] o [ aois
o) o) re 2 ' 1)

donde [qﬁwl] denota la diferencia ¢1,- (c X t) ¢w (c X t)

%99 » 99

Dado que en este caso el funcional involucrado depende de varias funciones, es conveniente introducir

la funci6n vectorial u = (w, o, P, ) Ahora el funcional (9) depende de u Yy se puede escribir ' = F (w)
L]

expresion que facilita la definicion de la variacion primera del funcional como una generalizacion del

concepto de derivada direccional de funciones reales de varias variables. Asi la derivada del funcional F
en el punto u y en la direccion v , esta dada por [5].

dF (u+¢€v)

OF (wyv) = (10)
d€ e=0
En vista de lo anterior, la condicién de funcional estacionario requiere que
OF (wyv)=0, VveD, (11)

donde v = (v, 77%,77%2) y D, es el espacio de las direcciones admisibles de u para el dominio D del fun-

cional, [14].
Con el fin de hacer los desarrollos matematicos requeridos en Ia aplicacién de las técnicas del calculo
de variaciones, se establecen las siguientes hipotesis: I),I)" € C(R"), D Ay eC'(R"),
q(i) (°7t> S C(EU))a w(xa')7¢zl (Xa')7¢12 (X7') € 02 [to7t1]> w('7t)a¢12 ('7t) € C(R)v y

w ('7t)|§(7> s Py ('7 t)‘ﬁm y P, ('a t)‘ﬁm eC” (R(i))a 1=12.
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Si se introduce el espacio producto U = (02 (}_2“) ><[t0,t1]))3 y teniendo en cuenta que el Principio de

Hamilton requiere que entre los tiempos ¢, y ¢, las posiciones sean conocidas, el dominio del funcional
(9) estéa dado por

(12)

D= {u;u cU,w(st), 0, (st) € C(}_B),u(x,to) =hy®,u(x,t)=h x,Vx € }_%}

Las Unicas direcciones admisibles v en u € D son aquellas para las cuales u+¢ev € D para e sufi-
cientemente pequefios y 6F (u;v) existe. En consecuencia teniendo en cuenta (12), v es una direccion

admisible en u para D si, y sélosi, v € D, donde

D, = {v;v cUv(st),m, (st) € C’(R),v(x,to) =v(xt)=0VYxeR } (13)
La aplicacion de la condicion (11) en el funcional (9) conduce a
ow Ov (09, On 0o On.
6F : Iz) foY Ty o o +
(u5v) = f[ ffﬂ“[o ot ot [6t ot ot ot
- On L 0n. ~[on on
+M(1) il +M(1) 2 +H(l) il + ) +
Yoo, * O, 210z, Oz
(14)
+Q2 +Q1 _+77r +q U dxldxz
67:62 oz, !
—fm ) (s)gbnnnds—fr(/) A (9) wods| —
—f Cp, (S ) [171 ]ds— frw el (s)wvds} dt=0, VveD,
donde:
: y 09, ) 09, (09, 09, 15
MO = —|p0 Z  p Tl | po | T8 T (15)
' "o, 2 o, Y\ oz, O
) , 09, , 09 N o) 16
M(z) - _ D( ‘I’ D il +D(z) T + Ty , ( )
? 2 o, ? o, “ 0z, Oz
09 09 (09 00, 17
g = _|p» L0y po Py | DO T || 17)
12 [ 16 axl 26 axZ 66 axZ a]}l
R ) R | 19
oz, oz, '
Q' =—|40| S g, [+ ag |2 g, 49)
Oz, oz, :

Ahora es conveniente transformar las integrales que intervienen en la expresion (14). Consideremos en

primer lugar la integral
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() — " (i)a_w@ (@) a¢11 87711 8¢z; anzz (20)
Ji _j;, fme[IU ot 3t+12 [875 ot + 9t o1 dz,dx,dt.

Dado que u(x,),v(x.) € C*[{,,t] se puede integrar por partes con respecto al tiempo ¢ y si se aplica
f )

la condicion v (x,t,) = v(x,t,) = 0, Vx € R, establecida en (13), se obtiene

| (09, On, 06, On,
= f f f 0 aw a’U I l) (z).tl naq + (ZS.I,Z 77,1,2 dzldxgdt:
0 o f
ff [ —v+1 [(;bt 4 512 7712] dz,dx, —
(21)
(0%, D9,
f ff [ +[ 6t2 771-, + atz 771.2 d$1d$2dt:
4 i 5w i 82@[1 62(1)12
__J; '»/:/:?(” [I(()) ot? U+I§) ot My, + oF M., dxldl'th
Sea ahora la integral
f ) —“dwldxzdt (22)

En este caso es necesario aplicar la formula de Green:
ff . da:ldxz = j; uon,ds — ff v da:ldxz, u,v € C" (R) (23)

donde n_ denota la i - ésima componente del vector normal exterior unitario n al contorno OR.
Si se aplica la formula de Green en la integral (22) se obtiene:

= :1 [, —lldm da,dt = o

8M

4

dt.

M 1<i)771»1 n,"d n,,dz,dz,

ty |Jor"

Procediendo de igual forma que con los restantes términos de (14) resulta
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2 (0 (0
OF (w;v) = f ff 8 _ 0@ 96, + g
oz, oz,
-62¢> , oM"Y 9HY
B O i R O Bt W
+ff3m[ : o T oz, O,

;0% ;oM 9HY
+ _I(l) ‘Iz + (iy Yy Yy de.d
fLm[ 2 ot QQ 8% 81’1 n,, 0%, T, |+

vdzx,dz, +

1, dz,dz, +

(25)

—i—f M\ + Hl(;)néi))nzl ds + f (Mé”ng) + Hf?n}’)) n,,ds +
R

AR (
[ e s @ond s [ o= [ e s
AR (@) (i)
“ CR12 (S) [¢“71 ] [7711 ] dS— f
e

()

+

c(T")(s)wvds} dt=0, VvveD.,.

4. PROBLEMAS DE CONTORNO

De acuerdo con la condicion de funcional estacionario, establecida por (11), la expresion (25) debe anu-
larse para la funcion u que describe el desplazamiento de los puntos del plano medio de la placa, para
todas las direcciones admisibles v € D , y en particular, para todas las v admisibles que satisfacen en

cada contorno @R las condiciones:
X t>|3R( O 7712 X t |)R 0’ 771,1 (X’t>|§R(H = 07 7’: 172 (26)

Para tales direcciones la condicion de funcional estacionario se reduce a:

2 8 (i) o (i)
(5F(11;v> f ff 8 Q _ Q, 1 q® vdz, dz, +
Ox, T,
00 , oM OH})
+ _I(%)_‘l_|_ (i _ 1 dz dz. + (27)
L e v e el g L

nmzdxlde dt =0,VveD,.

2 (i) (i)
—|—ff W 9 qb”z + Q(i) _ aMz N aHm
wo| 70t Oz, Oz,

Si la funcidn de carga ¢ es continuay se tiene en cuenta que v es una funcion arbitraria suficien-

temente regular y que satisface las condiciones (26), al aplicar el Lema Fundamental del Célculo de Va-
riaciones [5], se concluye que las funciones w, ¢, y ¢, deben satisfacer las siguientes ecuaciones dife-

renciales:



48 M.V. Quintana, R.O. Grossi

0Q" 9 | 0w
—_—t ' + I Y — = 07
Oz, oz, 1 ' ot
oM ale ¥ 82% . (28)
oz, on, ot
(i) (i) , _0? _
OMy” | OHy _ QY + 17 ¢;2 —0,¥x e R",i=12VYt>0.
oz, oz,

Si se reemplazan las expresiones (15)-(19) en (28) se obtienen las expresiones analiticas desarrolladas
de las ecuaciones diferenciales, esto es:

ow
oz,

0
—|AY
61’1 55

0

oz,

8_w+¢z,

+ AY
axl 45

o2

Azii)[ +¢ ]+A45 [_+¢

2

50 09,
s, pyo 00
Oz, oz, oz,

) 99, ) 99
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o, * o,
ow

oz, "

o6, 04,
., N ¢,
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o, 26,

+

+ Dy [

_|_
Oz, Oz,
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l — 12(,) a ¢.’1:1

+ Dy [

(29)

ow
—
8ml &

+ A

ot

0
oz,

+i‘p

99, ) 99,
L+ D) —=
oz, 2 o,

a¢ 6@5,‘
() Ty
L+ D
* o, * o,

ow
—— + ¢12 ] +A45 [8_ + ¢
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+
oz, Oux,

0p, 09,
¢, N ¢,
Jzx, Oux,
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2 a 2

+

i) i a¢I1 8¢z2
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+ D

oz,
ow

Ty

Vxe R",i=12Vt>0.

(i
Al

Las ecuaciones diferenciales de segundo orden (29) describen el comportamiento dindmico y estatico
(82u/8t2 = 0) de la placa en términos de los desplazamientos generalizados. Por otra parte, las expre-
siones analiticas de las ecuaciones diferenciales (28) resultan en términos de las fuerzas resultantes. Si

ahora se quitan las restricciones (26), y se tiene en cuenta que u satisface las ecuaciones diferenciales
(29), la expresion de la condicion (25) se reduce a:

6F (wv) = [ :1 {i

i=1

faRw (Mf”n{i’) + Hin) n,ds + f Onl 4 7 On! ) n,,ds +
(30)

+f o Ql(i)nfi) + Qé”né”)vds —frm s pm, ds — frm A () wuds| —

—f Cp, (s) 7711]615— frm ) (s)wvds} dt=0, VveD,.
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Para un adecuado tratamiento de las integrales curvilineas que intervienen en (30) es conveniente ex-
presar los desplazamientos ¢, y ¢, en funcion de las funciones ¢, y &, , las cuales describen las rota-

ciones de un punto alrededor de las coordenadas curvilineas s y n . Si el vector normal unitario 7"
exterior a OR" , esta orientado un angulo o con respecto al eje x,, entonces tiene sus cosenos directo-

res dados por: 7" = cosa y 7’ = sena. Teniendo en cuenta lo anterior, la transformacion de coorde-
nadas entre el sistema cartesiano (z,,z,) y el curvilineo (s,n) esta dada por:

e, = cosae, —sen ae,, €, = sen ae, + Cos ae,. 31)
donde e, y e, son los vectores unitarios correspondientes a las coordenadas z, y z,. Las relaciones

dadas por (31) , establecen que las rotaciones ¢, y ¢, estan relacionadas con las ¢, y ¢, mediante las
expresiones:

¢, = cosag, —sen ag,, (ﬁ% = sen a¢, + cos ag,. (32)

Si en primer lugar se considera la integral
frm CRlz (8) [(bfl ] [nf'l ] ds’ (33)
de acuerdo con las expresiones (32), ésta puede escribirse de la siguiente manera:
J;w chz (s) [¢71 ] [7]"’1 ] ds= j;(vJ CRIZ (s) [¢‘E1 ] (”{2)77" (C+’ Ly t) B ng)ns (C+,.’L'2,t) T (34)
+nin, (¢, m,, t) —n{"n, (¢, m,, t)) ds.

Cuando se considera a la linea T’ como parte del contorno del subdominio R", el vector normal uni-
tario saliente a '), esta dado por (ver Fig. 1):

Ty

Linea con rétulas
OR®
b ORW I
hG)
RO A
S *+
T R =RD yUR® yr®©

¢ OR = ORM U 9R® — T

|

c ‘T

(1) .
Cp Cr,, CE;)

A )

o) K
P I i

Fig. 1. Parametros geométricos y mecénicos de una placa con una linea intermedia con rétulas.

4
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i = (1,0), (35)
y cuando se considera a la linea I como parte del contorno del subdominio R®, es:
in? = (-1,0). (36)
El reemplazo de (35) y (36) en la integral (34) conduce a
fr w90, ][, ]ds=— fr en, 6, [(n, (¢ t) +n, (¢ 2, t)) ds. 37)

Si se reemplaza (37) en (30) y se reagrupan términos, ésta se transforma en:

8F (w;v) = ftf {i

1

Urm () — e} 9, mds+f n.ds +

+[ (@) =) w)uds+ [ (Mn, + M, + Q,E”v)ds + (38)

—i—f Ch, (s) nn (¢",myt) +m, (¢ 2y t))ds— frm ) ($) wvds} dt=0, VveD,

donde Q\”, M'", M'" estan dados por:
Q) = Qi + @, @)
i i) (=) i) (=0)\? i) = (i) = (i
MY = M R0 M (0] 2HR (o)
. . D\ =( 2 )\ 2

MY = (MY — M )7l + B (70 - (7)), (41)

Teniendo en cuenta que es posible elegir independientemente a las direcciones v, n, y 7, y que el in-

tervalo [t,,t,] es arbitrario, la condicién de funcional estacionario (11) permite obtener las siguientes

condiciones de contorno naturales del problema, las cuales establecen requerimientos sobre los momentos
flectores y las fuerzas cortantes respectivamente:

i @e,| ., =M, i=12, (42)
) w‘rm = fo)‘rm ,i=1,2, (43)
o, =0i=12 (44)

Si se tiene en cuenta que es IR = I UT™ | las expresiones (42), (43) y (44) conducen a las siguien-
tes condiciones de contorno a lo largo de OR:

Cr (45)
&r O,p = Qo » (46)
wlon =0 (47)

donde @, ,M, y M, estdn dados por las expresiones (39)-(41) y M,,Q,,i =1,2 y H,, estadn dados por

las expresiones (15)-(19) cuando el supraindice (7) es eliminado.

ns
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5. CONDICIONES DE TRANSICION

Al adoptar direcciones admisibles v, , y 7, adecuadas, la condicion (38) se reduce a

OF (wyv) = f

A
ty

{ZQ: fpw (Mfzi)”’]” + Mfli)”]s + Q,(f)v)dg —
i=1

_frm Cp, (S)[%](m (c*,zQ,t) +7, (c’,xQ,t)) ds— frm i (s) wvds} dt=0, VveD,.

Se analizan ahora las integrales curvilineas que intervienen en (48). En el caso de la integral

frm (Mfl”n" + Mf»i)ns + Q,(,,l)”)ds

la linea T” puede ser representada paramétricamente por la funcién (ver Fig. 1)

a () = (o (M, (M), 7 €a,b].

Dado que el vector normal unitario es 7" = (1,0), las expresiones (39)-(41) se reducen a:

1) — W _ -
Qﬂ () - Ql ‘1‘("] - Ql (C Ty t)7
1 1 —
M,(L> o — Ml( )‘rm =M, (C 7T’t)’
(1 — 1) _ -
M‘H,S)‘r(r) - H1(2 ‘F(") - H12 <C ,T’,t).

Si se reemplaza las expresiones (50)-(52) en la integral curvilinea (49) resultan

b

‘./;(“) MT(Ll)nndS = j; Ml (Ci, T,t) nn (077 T? t)dT’7
b

t/;(,) Mr(tls)nsds = f; H12 <ci7 Ty t) UR <Cia Ty t)d’f’,

frm QMvds = be1 (c7yrt)v(c,rt)dr.

En el caso de la integral
,j;(@ (MfL?)nn + Mfli)ns + Q’EL?),U)dS?

si para T'“'se adopta la representacion paramétricamente
B = (8,3, ), re0,b—al.

se obtienen las siguientes expresiones de los términos de la integral curvilinea (56)

fpm M, ds = L/;bia M, (c*,b — r,t)n” (c*,b — r,t) dr = j;b M, (c*,r,t)n” (c*,r,t) dr,

frm MPn.ds = f;b H, (c*,r,t) n, (c*,r,t)dr,

j;m Qﬁl)vds = _fb Q <C+77'7t)'0<0+, T,t)ds.

51

(48)

(49)

(50)

(51)

(52)

(83)

(54)

(55)

(56)

(57)

(58)

(59)
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Finalmente de (48), (53)-(55) y (57)-(59) y mediante un procedimiento analogo al usado en la determi-
nacién de las ecuaciones (42)-(44) resultan las siguientes condiciones:

Cr, (%)(% (C+7$2=t) — 9, (C_vxwt)) =M, <C+7x27t) = =M, (c",z,,1), (60)
H, (0771‘271&)“'[{12 (C+,$2,t>:(), (61)
) (z,)w(c,my,t) = Q (¢ ,20,t) — Q, (c*,xz,t) (62)

Las expresiones (45)-(47) corresponden a las condiciones de contorno y las expresiones (60)-(62) co-
rresponden a las condiciones de transicion del problema. Dado que w(e,t), 8, (st) € C(}_%), existe conti-

nuidad de estos desplazamientos en el punto (c*,zg) y esto genera las condiciones adicionales de transi-
cién
w(c,z,,t) = w(c*,xQ,t) = w(c,2,,t),Vz, € [a,b], (63)

.., (¢, 2,,t) = .. (c*,xQ,t) =, (¢, ,,t), Yz, €a,b]. (64)

De esta forma, todas las condiciones de transicion del problema pueden ser expresadas como

w(c,zyt) =w(c,z,,t) = w(ca,,t), (65)

¢, (¢7,2,,1) =, (¢",3,,t) = ¢, (¢, 3,,1), (66)

e, (1) (8, (¢7 2y t) = @, (¢ 2y t)) = =M, (¢¥,3,,t) = =M, (¢, 2y, 1), (67)
Hy, (¢, ay,t)+ Hy, (¢, 2,,t) = 0, (68)

e (m,) w(c, @y, t) = Q (¢, 2y,t) — Q (7, 1,,1). (69)

Es conocido que para operadores diferenciales de orden 2m, las condiciones de contorno que incluyen

la funcién « y sus derivadas de orden no mayor que m — 1, se llaman estables o geométricas, y aquellas
que incluyen derivadas de orden superior a m — 1, se llaman inestables o naturales. Si esta clasificacion

se extiende a las condiciones de transicion, se concluye que si 0 < ¢, , i) < oo, las condiciones de tran-

sicion (67)-(69) son naturales. Realizando el mismo analisis para las condiciones (65) y (66), se concluye
que son estables. La clasificacion establecida tiene particular importancia cuando se utiliza el método de
Ritz para resolver problemas de autovalores porque es bien conocido que las funciones de aproximacion
deben satisfacer solamente las condiciones de contorno estables del problema [15]. En este trabajo se
aplica esta propiedad al tratamiento de las condiciones de transicion, dado que en los ejemplos analiticos
solamente fueron tenidas en cuanta las condiciones de transicion estables.

Si se adoptan diferentes valores y/o valores limites de las funciones ¢, vy ¢\ en las ecuaciones (67) y

(69) se pueden generar diferentes situaciones. A continuacion se detallan algunos de los casos mas rele-
vantes:
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No hay rétula interna y la articulacion es perfectamente rigida

(¢)

5, (" 2y,t) = ¢, (¢ 1,t),

CRIZ :OO’CT = Ql (C_,$2,t):Ql <C+,Jf2,t).
Rotula internay la articulacion es perfecta
[¢] M, (¢ zyt) =M, (c+,x2,t):0,

g, =0, ) = 0.

Ql (C_,$2,t) = Ql <C+,x2,t).

Rotula interna soportada por un apoyo rigido

&

w(c,xZ,t) =0,

M, (¢, zy,t) = M, (c*,m,,t) = 0.

g, =0, el = oo0.
No hay rétula interna. Punto intermedio soportado por un apoyo
rigido
| ]
@ w(c,mQ,t)ZO,

— (e)
Cp, = 00,¢p = 00

6, (C+,$27t> =9, (c’,xmt).

Rotula interna soportada por una restriccion traslacional

M, (¢, z,,t) = M, (c*,xQ,t) =0,

Q (¢, my,t)— @, (c+,x2,t) = ¢\ (z,)w (e, z,t).

Roétula interna restringida elasticamente contra rotacion

Q1 (ciaxzat) = Q1 (C+,$2,t),
M, (c+,x2,t) =M, (c_,xZ,t) =
= —¢y, (x2)(¢zl (c*,xwt) -9, (cf,xQ,t)).

Roétula interna restringida elasticamente contra rotacion y soporta-
da por un apoyo rigido

w(c,xQ,t) =0,
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o] M, (C+,ZL’2,t):M1 <Cf,$2,t):
= _CR|2 (xQ)(¢1, (C+,$2,t) - ¢z, (0771"27]5))

Roétula interna restringida elasticamente contra rotacion y soporta-
da por una restriccion traslacional

Q (¢ zy,t) — @, (c*,xQ,t) = (z,)w(c, ).

Ml (C+,1132,t> = M1 (C_,il32,t) =
= "l (xQ)(¢f”1 <C+,ZL’2,t) - ¢:L‘1 (67’1‘271&))'

0< ¢y, <00,0<cf) < oo.

En todos los casos valen las condiciones de transicion dadas por:
w(c,z,,t) = w(c*,xz,t) = w(c, 1),
¢z2 <C+7$27t> = ¢12 (C_vxz,t) = ¢12 (C, $2,t),

Hy, (¢ ay,t)+ Hy (¢ 2y, t) =0, 2, €a,b]

Tabla 1. Coeficientes de frecuencias 2, = w, <12/7r2> /ph/DQZ, de una placa cuadrada SSSS, ort6tropa,

B/, = 25,1, = 0,25,Gyy B, = Gyy B, = 0,5 Gyy [ B, = 0,2k = 5/6).

¢/l | hfl Q Q, Q, Q, Q. Q,
0.5 | 0.01 | Presente | 1.8456 5.0528 10.2368 17.7072 20.0710 21.1406
[11] | 1.8427 50487 10.0904 17.0579 20.0710 21.1406

0.1 | Presente | 1.7213 4.4507 82121 117257 124929 12.7018
[11] | 1.7213 44507 8.1312 11.7257 12.4071 12.4929

03 | 0.1 | Presente | 1.8099 4.5538 8.2983  9.4361 10.5345 12.7707
[11] | 1.8099 4.5537 8.2246  9.4361 10.5344 12.4765

0.01 | Presente | 1.9605 52046 10.3815 13.6660 15.1985 17.8330
[11] | 1.9567 5.1994 10.2356 13.6649 15.1913 17.1857

0.1 | 0.01 | Presente | 2.6661 6.0018 9.7783  10.9750 12.3748 17.1243
[11] | 2.6525 5.9892 9.7685 10.8336 12.3418 17.6070

0.1 | Presente | 2.2646 50247 73776 86300  9.1138  12.0519
[11] | 2.2640 5.0240 7.3773 85561  9.1127  12.0043




Tratamiento variacional de placas laminadas con rotulas intermedias utilizando la teoria de primer orden 55

6. EJEMPLOS ANALITICOS

En la Tabla 1 se muestra una comparacién de los valores de los coeficientes de frecuencia
Q, =w, (l2 /772)1/,0]1/])22,2' =1,...,6, para una placa cuadrada, ortdtropa, simplemente apoyada en to-

dos sus lados y para tres posiciones distintas de la linea de rétulas. [ denota la longitud de la placay h su
altura. Los parametros caracteristicos del material estan dados por: relacion de Poisson 1, = 0,25, rela-

cion de modulos de elasticidad E, /E, =25, moédulos de corte G,/ E,=0,5G,/E, =0,5;
G,, / E, = 0,2. En todos los casos se utiliz6 un factor de correccion por corte k =5/ 6.

Los valores fueron obtenidos mediante una combinacion del método de Ritz y el método de la funcion
de penalidad [15]. Se observa una adecuada concordancia entre los valores numéricos descritos y los pro-
porcionados en la referencia [11], que fueron obtenidos aplicando el método de solucién de Levy en com-
binacion con la técnica de descomposicion de dominios. EI método descrito en la Ref. [11] solo puede ser
empleado en placas con dos lados paralelos simplemente apoyados, mientras que la metodologia utilizada
en el presente trabajo permite considerar condiciones de contorno arbitrarias incluyendo restricciones
elasticas.

7. CONSIDERACIONES FINALES

El principio de Hamilton ha sido rigurosamente formulado al definir el espacio de las funciones admisi-
bles D y el de las direcciones admisibles D del funcional involucrado. Luego se aplicaron las técnicas

del calculo de variaciones y se demostré que es una formidable herramienta matematica para obtener, a
partir de la teoria de placas de primer orden (FSDT), los problemas de contorno que describen el compor-
tamiento estatico y dindmico de placas laminadas moderadamente gruesas de forma arbitraria con contor-
nos elasticamente restringidos y con una linea intermedia con rétulas restringidas contra rotacion y trasla-
cion. Las ecuaciones diferenciales fundamentales que gobiernan los problemas descritos fueron obtenidas
dividiendo el dominio de la placa en dos subdominios. Un producto esencial que proporcioné el calculo
de variaciones son las condiciones de contorno y en particular las condiciones de transicion, tanto geomé-
tricas como naturales.

Ademas se obtuvieron valores numéricos de los coeficientes de frecuencia de placas cuadradas ort6tro-
pas, con lineas de rétulas en distintas posiciones, utilizando una combinacion del método de Ritz y el
método de la funcion de penalidad.
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VARIATIONAL TREATMENT OF LAMINATED PLATES WITH AN INTERNAL
LINE HINGE USING THE FIRST ORDER THEORY

Abstract — The dynamical behaviour of plates with an arbitrarily located internal line hinge with elastics sup-
ports is of technological interest. A line hinge in a plate can be used to facilitate folding of gates or the opening
of doors among other applications. A review of the literature has shown that there is only a limited amount of
information for the vibration of thick laminated plates with line hinges and boundaries elastically restrained.
The aim of this paper is to derive, by using the techniques of the calculus of variation, of the equations of mo-
tion and their associated boundary and transition conditions. The study is developed using the first order shear
deformation plate theory (FSDT).

Keywords - Plates, Line hinge, Calculus of variations, Boundary values problems.



