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Resumen – El problema de vibraciones libres de placas con presencia de rótulas elásticamente restringidas y si-
tuadas en puntos intermedios, es de interés en ciertas aplicaciones de la ingeniería. Una línea intermedia con 
rótulas en una placa, puede ser usada para facilitar la apertura de puertas, la plegadura de portones y para simu-
lar ciertas fracturas. La presencia de las rótulas genera condiciones cuyas expresiones analíticas son análogas a 
las de las condiciones de contorno y complican notablemente la resolución, tanto analítica como numérica, de 
los problemas correspondientes. Es importante notar que no existen estudios en la literatura, del problema de 
vibraciones libres de placas gruesas elásticamente restringidas en sus contornos y que además posean rótulas in-
termedias restringidas elásticamente. El objetivo de este trabajo es la obtención, mediante las técnicas del cálcu-
lo de variaciones, de los problemas de contorno que describen el comportamiento estático y dinámico de placas 
con una línea intermedia con rótulas. En el estudio se consideran placas laminadas moderadamente gruesas mo-
deladas mediante el uso de la teoría de primer orden, la cual permite tener en cuenta los efectos de la inercia ro-
tatoria y de las deformaciones transversales por corte. El uso de la teoría mencionada permite obtener mayor 
precisión en la determinación de los coeficientes de frecuencia y los modos superiores de vibración, con respec-
to a los proporcionados por la teoría clásica de placas. 

Palabras clave – Placas, rótulas intermedias, cálculo de variaciones, problemas de contorno. 

1. INTRODUCCIÓN 

La denominada teoría de placas de primer orden, conocida por sus siglas en inglés FSDT, extiende la 
cinemática de la teoría clásica de placas (CLPT), incluyendo una deformación transversal por corte cons-
tante en el espesor de la placa. Además, la teoría FSDT, incorpora los efectos de la inercia rotatoria. El 
efecto más significativo de incluir las deformaciones transversales por corte, se observa en la predicción 
de los valores de las deflexiones, frecuencias de vibración y cargas de pandeo. Es conocido que la teoría 
clásica de placas predice valores numéricos de las deflexiones menores que los exactos y en cambio, pro-
duce valores superioores para las frecuencias y las cargas de pandeo, cuando las placas poseen una rela-
ción largo-espesor aproximadamente menor o igual a 20. Por esta razón es necesario el uso de una teoría 
de orden superior para el análisis de placas que son relativamente gruesas.  

Existe una gran cantidad de textos y trabajos de investigación sobre la obtención, mediante el cálculo de 
variaciones, de las ecuaciones diferenciales y las condiciones de contorno que describen el comporta-
miento estático y dinámico de placas [1-5]. No obstante, todas estas obras tratan el caso de placas isótro-
pas y contornos con apoyos clásicos, es decir simplemente apoyados, rígidamente empotrados y libres. En 
las referencias [6,7] se trataron problemas de placas anisótropas restringidas elásticamente y con contor-
nos que poseen puntos angulosos. Por otro lado, existe una cantidad limitada de trabajos que contemplan 
la presencia de líneas intermedias con rótulas en una placa [8-12]. Por ello, el objetivo fundamental de 
este trabajo es obtener las ecuaciones gobernantes, las condiciones de contorno, y las condiciones de tran-
sición, que gobiernan el comportamiento estático y dinámico, de acuerdo con la teoría FSDT, de una pla-
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ca anisótropa de forma arbitraria, con contornos elásticamente restringidos y con una línea intermedia con 
rótulas restringidas contra rotación y traslación. 

2. COMPONENTES DE LAS ENERGÍAS DE LA PLACA 

Sea una placa moderadamente gruesa de material con contornos elásticamente restringidos contra rota-
ción y traslación y con una línea intermedia con rótulas también restringidas elásticamente, tal como se 
observa en la Fig. 1. Se supone que la placa está sometida a cargas perpendiculares al plano medio y está 
constituida por un apilamiento de capas ortótropas, de forma tal que en conjunto forman un esquema de 
laminación simétrico con respecto al plano medio. Dada la existencia de la línea de rótulas, el contorno 
R∂  de la placa, queda dividido en las curvas (1)Γ  y (2)Γ , donde ( ) ( ) ( ), 1,2i i cR iΓ = ∂ −Γ =  y donde la 

curva ( ){ }( )
2,c c x RΓ = ∈  es la parte común a los contornos (1)R∂  y (2)R∂ . En vista de lo anterior, se 

supone que, las restricciones rotacionales están caracterizadas por las funciones 

( )( ) ( ) ( ), , 1,2i i i
R Rc c s s i= ∀ ∈ Γ =  y por ( )12 12

( ), c
R Rc c s s= ∀ ∈ Γ  y en forma análoga, las restricciones tras-

lacionales están definidas por las funciones ( )( ) ( )i i
T Tc c s=

 
y ( )( ) ( )c c

T Tc c s= . 

Los desarrollos siguientes se basan teniendo en cuenta las hipótesis cinemáticas de la teoría FSDT [13].  

2.1. Energía de deformación de la placa 

De acuerdo con las hipótesis establecidas anteriormente, la energía de deformación por flexión trans-
versal de la placa descrita, se puede expresar de la siguiente manera:  
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 (1)

donde ( ) ( )( ) ( ) ( ) ( )
1 2 1 2, , , 1,2k k k k

ij ij ij ijD D x x A A x x k= = = , son las rigideces flexionales y extensionales de la 
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con ( )1 2,h h x x=
 
y donde K  es el factor de corrección por corte, el cual permite tener en cuenta la dife-

rencia entre las fuerzas de cortes reales y las proporcionadas por la teoría FSDT. Además ( )r
ijQ  denota a 

los elementos de la matriz constitutiva de la capa r  del laminado simétrico, ( )1 2, ,w w x x t=  denota la 
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deflexión transversal de los puntos del plano medio de la placa y las funciones ( )
2 2 1 2, ,x x x x tφ φ=  y 

( )
1 1 1 2, ,x x x x tφ φ=  denotan las rotaciones de la sección transversal alrededor de las coordenadas 1x  y 2x  

respectivamente.  
Dado que el dominio de la placa esta dividido la función w  se define como: 
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De igual forma se definen ( )
2 2 1 2, ,x x x x tφ φ=  y ( )

1 1 1 2, , .x x x x tφ φ=  

2.2. Energía de deformación de los vínculos rotacionales y traslacionales 

La energía de deformación total asociada a los vínculos elásticos descriptos están dadas por: 
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donde c+  y c−  denotan los límites laterales y nφ  la rotación de un punto en la coordenada normal n .  

2.3. Energía cinética de la placa  

La energía cinética para cualquier instante t , cuando se tiene en cuenta el efecto de la inercia rotatoria 
y cuando la placa es homogénea, se define mediante la expresión [13]: 

1 2

( )

2 22 2
( ) ( )
0 2 1 2

1

1 ,
2 i

x xi i

Ri

wT I I dx dx
t t t

φ φ

=

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂⎛ ⎞∂ ⎟⎜⎢ ⎥⎟ ⎟⎜ ⎜ ⎟⎟⎜ ⎜ ⎟ ⎟= + +⎜ ⎜ ⎟⎟⎜⎢ ⎥⎜ ⎟ ⎟⎟⎜ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎜∂ ∂ ∂ ⎟⎝ ⎠ ⎝ ⎠⎜⎢ ⎥⎝ ⎠⎣ ⎦
∑∫∫  

(6) 

donde,  

( ) ( )
2 2

3( ) ( ) ( ) 2 ( ) ( ) ( )
0 0 0 2 0 0 1 2

2 2

1, , ,
12

h h

i i i i i i

h h

I dz h I z dz h h h x xρ ρ ρ ρ
− −

= = = = =∫ ∫  
(7) 

2.4. Energía potencial de las cargas exteriores  

La energía potencial debida a una carga transversal ( )1 2, ,q q x x t=  que actúa sobre ,R  en un instante t  
está dada por: 
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3. VARIACIÓN DEL FUNCIONAL DE ENERGÍA 

El Principio de Hamilton requiere que entre los instantes de tiempos 0t  y 1t , en los cuales la posición 
del sistema mecánico es conocida, se produzca un movimiento que haga estacionario el funcional 
( )

1

0

t

t
F dt= Π∫u , en el espacio de las funciones admisibles, donde Π  es el Lagrangiano correspondiente 

y está dado por R TT V U U UΠ = − − − − , [5]. 
Si se aplica el Principio de Hamilton y luego se reemplazan las expresiones para las distintas energías 

que intervienen en el funcional Π  y que están dadas por (1), (4)-(6) y (8), resulta:  
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donde 
1x

φ⎡ ⎤
⎢ ⎥⎣ ⎦  denota la diferencia ( ) ( )

1 12 2, , , ,x xc x t c x tφ φ+ −− .  

Dado que en este caso el funcional involucrado depende de varias funciones, es conveniente introducir 
la función vectorial ( )

1 2
, ,x xw φ φu = . Ahora el funcional (9) depende de u  y se puede escribir ( )F F= u  

expresión que facilita la definición de la variación primera del funcional como una generalización del 
concepto de derivada direccional de funciones reales de varias variables. Así la derivada del funcional F  
en el punto u  y en la dirección v  , esta dada por [5].  
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Si se introduce el espacio producto [ ]( )( )32 ( )
0 1,iU C R t t= ×  y teniendo en cuenta que el Principio de 

Hamilton requiere que entre los tiempos 0t  y 1t  las posiciones sean conocidas, el dominio del funcional 
(9) está dado por 
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x x x x
φ φ φ φ ⎞⎛ ⎛ ⎞∂ ∂ ∂ ∂ ⎟⎟⎜ ⎜ ⎟⎟= − + + +⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎝ ⎠⎠

 (17) 

2 1

( ) ( ) ( )
2 44 45

2 1

,i i i
x x

w wQ A A
x x

φ φ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ⎟⎜ ⎟ ⎟⎜ ⎜ ⎟⎟ ⎟= −⎜ + + +⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎟⎜ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (18) 

1 2

( ) ( ) ( )
1 55 45

1 2

.i i i
x x

w wQ A A
x x

φ φ
⎛ ⎛ ⎞⎞ ⎛ ⎞∂ ∂⎜ ⎟⎜ ⎟ ⎟⎜ ⎟⎜ ⎟ ⎟= − ⎜ + + +⎜ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎟ ⎟⎜ ⎟⎜⎜ ∂ ∂⎠ ⎝ ⎠⎝ ⎠⎝

 (19) 

Ahora es conveniente transformar las integrales que intervienen en la expresión (14). Consideremos en 
primer lugar la integral  



46 M.V. Quintana, R.O. Grossi 

 

1
1 1 2 2

( )
0

( ) ( ) ( )
1 0 2 1 2 .

i

t x x x xi i i

t R

w vJ I I dx dx dt
t t t t t t

φ η φ η⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ⎟⎜ ⎟⎜ ⎟⎟= + +⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎟⎜ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠∫ ∫∫  (20)

Dado que ( ) ( ) [ ]2
0 1, , , ,C t t∈u x v xi i  se puede integrar por partes con respecto al tiempo t  y si se aplica 

la condición ( ) ( )0 1, , 0, ,t t R= = ∀ ∈v x v x x  establecida en (13), se obtiene 

1
1 1 2 2

( )
0

1

1 2

1 2( )

0

1

( ) ( ) ( )
1 0 2 1 2

( ) ( )
0 2 1 2

22
( ) ( )
0 22 2

i

i

t
x x x xi i i

t R

t

x xi i
x x

R
t
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x

w vJ I I dx dx dt
t t t t t t

wI v I dx dx
t t t

wI v I
t t

φ η φ η

φ φ
η η

φ
η

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ⎟⎜ ⎟⎜ ⎟⎟= + + =⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎟⎜ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂∂ ⎟⎜ ⎟⎜ ⎟⎟= + + −⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎟⎜ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∂∂− +
∂ ∂

∫ ∫∫

∫∫
1

2

1 2( )
0

1
1 2

1 2( )
0

2

1 22

2 22
( ) ( )
0 2 1 22 2 2

i

i

t
x

x
t R

t
x xi i

x x
t R

dx dx dt
t

wI v I dx dx dt
t t t

φ
η

φ φ
η η

⎛ ⎞⎛ ⎞∂ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎜ + =⎟⎟⎜ ⎜ ⎟⎟⎟⎜ ⎜ ∂ ⎟⎜ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂∂ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎜=− + + ⎟⎟⎜ ⎜ ⎟⎟⎟⎜ ⎜∂ ∂ ∂ ⎟⎜ ⎝ ⎠⎝ ⎠

∫ ∫∫

∫ ∫∫

 (21)

Sea ahora la integral 

1
1

( )
0

( ) ( )
2 1 1 2

1

.
i

t xi i

t R
J M dx dx dt

x
η∂

=
∂∫ ∫∫  (22)

En este caso es necesario aplicar la fórmula de Green: 

( )(1)
1 2 1 2, , ,i

R R R
i i

v uu dx dx uvn ds v dx dx u v C R
x x∂

∂ ∂= − ∈
∂ ∂∫∫ ∫ ∫∫  (23)

donde in  denota la -i ésima componente del vector normal exterior unitario n
G

 al contorno .R∂  
Si se aplica la fórmula de Green en la integral (22) se obtiene: 

1
1

( )
0

1

( ) ( )1 1
0

( ) ( )
2 1 1 2

1

( )
( ) ( ) 1
1 1 1 2

1

.

i

i i

t xi i

t R

it
i i
x x

t R R

J M dx dx dt
x

MM n ds dx dx dt
x

η

η η
∂

∂
= =

∂
⎡ ⎤∂⎢ ⎥= −⎢ ⎥∂⎣ ⎦

∫ ∫∫

∫ ∫ ∫∫
 (24)

Procediendo de igual forma que con los restantes términos de (14) resulta 
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( )
1

( )
0

1

1( )

2

2 ( ) ( )2
( ) ( )1 2
0 1 22

1 21

2 ( ) ( )
( ) ( ) 1 12
2 1 1 22

1 2

2 ( )
( ) ( ) 2
2 22

2

;
i

i

t i i
i i

t Ri

i i
xi i

x
R

i
xi i

Q QwF I q vdx dx
t x x

M HI Q dx dx
t x x

MI Q
t x

δ

φ
η

φ

=

⎧ ⎡ ⎛ ⎞⎪ ∂ ∂∂⎪ ⎟⎜⎢ ⎟= − − − + +⎜⎨ ⎟⎢ ⎜ ⎟⎜⎪ ∂ ∂ ∂⎝ ⎠⎢⎪ ⎣⎩
⎛ ⎞∂ ∂ ∂⎜ ⎟⎟⎜+ − + − − +⎟⎜ ⎟⎜ ∂ ∂ ∂ ⎠⎝
⎛ ∂ ∂ ∂⎜⎜+ − + − −⎜⎜ ∂ ∂⎝

∑∫ ∫∫

∫∫

u v
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2( )

1 2( ) ( )

( ) ( ) ( )

12 1( )
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1 2
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 12 2 2 2 12 1

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 ( ) ( )

( )

i

i i

i i i

c

i

x
R

i i i i i i i i
x x

R R

i i i i i i
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R

R x

H dx dx
x

M n H n ds M n H n ds

Q n Q n vds c s ds c s wvds

c s

η

η η

φ η

φ

∂ ∂

∂ Γ Γ

Γ

⎤⎞⎟ ⎥⎟ +⎟ ⎥⎟∂ ⎠ ⎥⎦

+ + + + +

⎤
⎥+ + − − −
⎥⎦

⎡ ⎤− ⎢⎣ ⎦

∫∫
∫ ∫
∫ ∫ ∫
∫ 1 ( )

( )( ) 0, .
c

c
x T ads c s wvds dt Dη

Γ

⎫⎪⎪⎡ ⎤ − = ∀ ∈⎬⎥ ⎢ ⎥⎣ ⎦ ⎪⎪⎭∫ v

 (25)

4. PROBLEMAS DE CONTORNO 

De acuerdo con la condición de funcional estacionario, establecida por (11), la expresión (25) debe anu-
larse para la función u  que describe el desplazamiento de los puntos del plano medio de la placa, para 
todas las direcciones admisibles aD∈v , y en particular, para todas las v  admisibles que satisfacen en 
cada contorno ( )iR∂  las condiciones:  

( ) ( ) ( )( ) ( ) ( )2 1
, 0,  , 0, , 0, 1,2.i i ix xR R R

v t t t iη η
∂ ∂ ∂
= = = =x x x  (26)

Para tales direcciones la condición de funcional estacionario se reduce a: 

( )
1

( )
0

1

1( )

2

2 ( ) ( )2
( ) ( )1 2
0 1 22

1 21
2 ( ) ( )

( ) ( ) 1 12
2 1 1 22

1 2

2
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2 22

;
i

i
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i i
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Q QwF I q vdx dx
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I Q dx dx

x xt

M
I Q

t

δ

φ
η

φ

=

⎧ ⎡ ⎛ ⎞⎪ ∂ ∂∂⎪ ⎟⎜⎢⎪ ⎟⎜= − − − + +⎨ ⎟⎢ ⎜ ⎟⎪ ⎜ ⎟∂ ∂∂⎢ ⎝ ⎠⎪ ⎣⎪⎩
⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟+ − + − − +⎜ ⎟⎟⎜ ⎟∂ ∂∂⎜ ⎠⎜⎝
⎛ ∂ ∂⎜⎜+ − + −⎜⎜ ∂⎜⎜⎝

∑∫ ∫∫

∫∫

u v

2( )

( ) ( )
12

1 2
2 1

0, .
i

i i

x a
R

H
dx dx dt D

x x
η

⎫⎤⎪⎞ ⎪∂ ⎥⎟ ⎪⎟− = ∀ ∈⎥⎬⎟⎟ ⎪⎟∂ ∂ ⎥⎠ ⎪⎥⎪⎦⎭
∫∫ v

 (27)

 Si la función de carga q  es continua y se tiene en cuenta que v  es una función arbitraria suficien-
temente regular y que satisface las condiciones (26), al aplicar el Lema Fundamental del Cálculo de Va-
riaciones [5], se concluye que las funciones 

1
, xw φ y 

2x
φ deben satisfacer las siguientes ecuaciones dife-

renciales: 
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1

2
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x

 (28)

Si se reemplazan las expresiones (15)-(19) en (28) se obtienen las expresiones analíticas desarrolladas 
de las ecuaciones diferenciales, esto es:  

1 2
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1 2
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55 45
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∀ ∈ = ∀ ≥
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(29)

Las ecuaciones diferenciales de segundo orden (29) describen el comportamiento dinámico y estático 

( )2 2 0t∂ ∂ =u  de la placa en términos de los desplazamientos generalizados. Por otra parte, las expre-

siones analíticas de las ecuaciones diferenciales (28) resultan en términos de las fuerzas resultantes. Si 
ahora se quitan las restricciones (26), y se tiene en cuenta que u  satisface las ecuaciones diferenciales 
(29), la expresión de la condición (25) se reduce a: 
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(30)
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Para un adecuado tratamiento de las integrales curvilíneas que intervienen en (30) es conveniente ex-
presar los desplazamientos 

1x
φ y 

2x
φ  en función de las funciones nφ  y sφ  , las cuales describen las rota-

ciones de un punto alrededor de las coordenadas curvilíneas s  y n . Si el vector normal unitario ( )inG  
exterior a ( )iR∂  , está orientado un ángulo α  con respecto al eje 1x , entonces tiene sus cosenos directo-
res dados por: ( )

1 cosin α=
G

 y ( )
2 senin α=
G

. Teniendo en cuenta lo anterior, la transformación de coorde-
nadas entre el sistema cartesiano ( )1 2,x x  y el curvilíneo ( ),s n  esta dada por:  

1 2cos sen , sen + cos .n s n sα α α α= − =e e e e e e  (31)

donde 1e  y 2e  son los vectores unitarios correspondientes a las coordenadas 1x  y 2x . Las relaciones 
dadas por (31) , establecen que las rotaciones 

1x
φ y 

2x
φ  están relacionadas con las nφ  y sφ  mediante las 

expresiones:  

1 2
cos sen , sen + cos .x n s n sxφ αφ αφ φ αφ αφ= − =  (32)

Si en primer lugar se considera la integral  

( )
( ) 12 1 1

,
c R x xc s dsφ η

Γ
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫  (33)

de acuerdo con las expresiones (32), ésta puede escribirse de la siguiente manera:  

( ) ( ) ( ) ( )(
( ) ( ))

( ) ( )12 1 1 12 1

(2) (2)
1 2 2 2

(1) (1)
2 2 1 2

, , , ,

, , , , .

c cR x x R x n s

s n

c s ds c s n c x t n c x t

n c x t n c x t ds

φ η φ η η

η η

+ +

Γ Γ

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
+ −

∫ ∫  (34)

Cuando se considera a la línea ( )cΓ como parte del contorno del subdominio (1)R , el vector normal uni-
tario saliente a ( )cΓ , está dado por (ver Fig. 1): 
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(1) (2) ( )cR R R= ∪ ∪ Γ
(1) (2) ( )cR R R∂ = ∂ ∪ ∂ − Γ
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c

(2)
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a
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Fig. 1. Parámetros geométricos y mecánicos de una placa con una línea intermedia con rótulas. 
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( )(1) 1, 0 ,n =G  (35)

y cuando se considera a la línea ( )cΓ como parte del contorno del subdominio (2)R , es:  

( )(2) 1, 0 .n = −G  (36)

El reemplazo de (35) y (36) en la integral (34) conduce a  

( ) ( ) ( )( ( ))
( ) ( )12 1 1 12 1 2 2, , , , .
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤=− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∫ ∫  (37)

Si se reemplaza (37) en (30) y se reagrupan términos, ésta se transforma en:  

( ) ( ) )( ( )

( ) )( ( )
( ) ( )( ( )) ( ) }

1

( ) ( )
0

( ) ( )

( ) ( )12 1

2
( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( )

( )
2 2

;

, , , , 0, ,

i i

i c

c c

t
i i i
n R n n ns s

t i

i i i i i
n T n n ns s n

c
R x n n T a

F M c s ds M ds

Q c s w vds M M Q v ds

c s c x t c x t ds c s wvds dt D

δ φ η η

η η

φ η η

Γ Γ=

Γ Γ

+ −

Γ Γ

⎧⎪ ⎡⎪= − + +⎨ ⎢⎪ ⎣⎪⎩
⎤+ − + + + +⎥⎦

⎡ ⎤+ + − = ∀ ∈⎢ ⎥⎣ ⎦

∑∫ ∫ ∫

∫ ∫
∫ ∫

u v

v

 (38)

donde ( ) ( ) ( ), ,i i i
n n nsQ M M  están dados por: 

( ) ( ) ( ) ( ) ( )
1 1 2 2 ,i i i i i

nQ Q n Q n= +G G  (39)

( ) ( )2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 12 1 22 ,i i i i i i i i

nM M n M n H n n= + +G G G G  (40)

 ( ) ( ) ( )( )2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 2 12 1 2 .i i i i i i i i

nsM M M n n H n n= − + −G G G G  (41)

Teniendo en cuenta que es posible elegir independientemente a las direcciones , nv η  y sη  y que el in-

tervalo [ ]0 1,t t  es arbitrario, la condición de funcional estacionario (11) permite obtener las siguientes 
condiciones de contorno naturales del problema, las cuales establecen requerimientos sobre los momentos 
flectores y las fuerzas cortantes respectivamente: 

( )
( ) ( )

( ) ( ) , 1,2,i i

i i
R n nc s M iφ

Γ Γ
= =  (42)

( )
( ) ( )

( ) ( ) , 1,2,i i

i i
T nc s w Q i

Γ Γ
= =  (43)

( )

( ) 0, 1,2.i

i
nsM i

Γ
= =  (44)

Si se tiene en cuenta que es (1) (2)R∂ = Γ ∪ Γ , las expresiones (42), (43) y (44) conducen a las siguien-
tes condiciones de contorno a lo largo de R∂ :  

( ) ,R n n RR
c s Mφ ∂∂

=  (45)

( ) ,T nR R
c s Q∂ ∂=  (46)

0,ns R
M ∂ =  (47)

donde ,n nQ M  y nsM  están dados por las expresiones (39)-(41) y , , 1,2i iM Q i =  y 12H  están dados por 
las expresiones (15)-(19) cuando el supraíndice ( )i  es eliminado.  
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5. CONDICIONES DE TRANSICIÓN 

Al adoptar direcciones admisibles , nv η  y sη  adecuadas, la condición (38) se reduce a 

( ) ( )

( ) ( )( ( )) ( ) }

1

( )
0

( ) ( )12 1

2
( ) ( ) ( )

1

( )
2 2

;

, , , , 0, .

c

c c

t
i i i
n n ns s n

t i

c
R x n n T a

F M M Q v ds

c s c x t c x t ds c s wvds dt D

δ η η

φ η η

Γ=

+ −

Γ Γ

⎧⎪⎪= + + −⎨⎪⎪⎩
⎡ ⎤− + − = ∀ ∈⎢ ⎥⎣ ⎦

∑∫ ∫

∫ ∫

u v

v
 (48)

Se analizan ahora las integrales curvilíneas que intervienen en (48). En el caso de la integral  

( )( )

(1) (1) (1)
c n n ns s nM M Q v dsη η

Γ
+ +∫  (49)

la línea ( )cΓ  puede ser representada paramétricamente por la función (ver Fig. 1)  

( ) ( ) ( )( ) [ ]1 2, , , .r r r r a bα α α= ∈   

Dado que el vector normal unitario es ( )(1) 1, 0n =G , las expresiones (39)-(41) se reducen a: 

( )( ) ( )

(1) (1)
1 1 , , ,c cnQ Q Q c r t−

Γ Γ
= =  (50)

( )( ) ( )

(1) (1)
1 1 , , ,c cnM M M c r t−

Γ Γ
= =  (51)

 ( )( ) ( )

(1) (1)
12 12 , , .c cnsM H H c r t−

Γ Γ
= =  (52)

Si se reemplaza las expresiones (50)-(52) en la integral curvilínea (49) resultan 

( ) ( )
( )

(1)
1 , , , , ,

c

b

n n n
a

M ds M c r t c r t drη η− −

Γ
=∫ ∫  (53)

( ) ( )
( )

(1)
12 , , , , ,

c

b

ns s s
a

M ds H c r t c r t drη η− −

Γ
=∫ ∫  (54)

( ) ( )
( )

(1)
1 , , , , .

c

b

n
a

Q vds Q c r t v c r t dr− −

Γ
=∫ ∫  (55)

En el caso de la integral  

( )( )

(2) (2) (2) ,
c n n ns s nM M Q v dsη η

Γ
+ +∫  (56)

si para ( )cΓ se adopta la representación paramétricamente  

( ) ( ) ( )( ) [ ]1 2, , 0, .r r r r b aβ β β= ∈ −  

se obtienen las siguientes expresiones de los términos de la integral curvilínea (56) 

( ) ( ) ( ) ( )
( )

(2)
1 1

0
, , , , , , , , ,

c

b a b

n n n n
a

M ds M c b r t c b r t dr M c r t c r t drη η η
−

+ + + +

Γ
= − − =∫ ∫ ∫  (57)

( ) ( )
( )

(2)
12 , , , , ,

c

b

ns s s
a

M ds H c r t c r t drη η+ +

Γ
=∫ ∫  (58)

( ) ( )
( )

(1)
1 , , , , .

c

b

n
a

Q vds Q c r t v c r t ds+ +

Γ
= −∫ ∫  (59)
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Finalmente de (48), (53)-(55) y (57)-(59) y mediante un procedimiento análogo al usado en la determi-
nación de las ecuaciones (42)-(44) resultan las siguientes condiciones:  

( ) ( ) ( )( ) ( ) ( )
12 1 12 2 2 1 2 1 2, , , , , , , , ,R x xc x c x t c x t M c x t M c x tφ φ+ − + −− =− =−  (60)

( ) ( )12 2 12 2, , , , 0,H c x t H c x t− ++ =  (61)

( ) ( ) ( ) ( )( )
2 2 1 2 1 2, , , , , ,c

Tc x w c x t Q c x t Q c x t− += −  (62)

Las expresiones (45)-(47) corresponden a las condiciones de contorno y las expresiones (60)-(62) co-
rresponden a las condiciones de transición del problema. Dado que ( ) ( ) ( )

2
, , ,xw t t C Rφ ∈i i , existe conti-

nuidad de estos desplazamientos en el punto ( )2,c x+  y esto genera las condiciones adicionales de transi-
ción 

( ) ( ) ( ) [ ]2 2 2 2, , , , , , , , ,w c x t w c x t w c x t x a b− += = ∀ ∈  (63)

( ) ( ) ( ) [ ]
2 2 22 2 2 2, , , , , , , , .x x xc x t c x t c x t x a bφ φ φ− += = ∀ ∈  (64)

De esta forma, todas las condiciones de transición del problema pueden ser expresadas como  

( ) ( ) ( )2 2 2, , , , , , ,w c x t w c x t w c x t− += =  (65)

( ) ( ) ( )
2 2 22 2 2, , , , , , ,x x xc x t c x t c x tφ φ φ− += =  (66)

( ) ( ) ( )( ) ( ) ( )
12 1 12 2 2 1 2 1 2, , , , , , , , ,R x xc x c x t c x t M c x t M c x tφ φ+ − + −− =− =−  (67)

( ) ( )12 2 12 2, , , , 0,H c x t H c x t− ++ =  (68)

( ) ( ) ( ) ( )( )
2 2 1 2 1 2, , , , , , .c

Tc x w c x t Q c x t Q c x t− += −  (69)

Es conocido que para operadores diferenciales de orden 2 ,m  las condiciones de contorno que incluyen 
la función u  y sus derivadas de orden no mayor que 1m − , se llaman estables o geométricas, y aquellas 
que incluyen derivadas de orden superior a 1m − , se llaman inestables o naturales. Si esta clasificación 
se extiende a las condiciones de transición, se concluye que si 

12

( )0 , ,c
R Tc c≤ <∞ las condiciones de tran-

sición (67)-(69) son naturales. Realizando el mismo análisis para las condiciones (65) y (66), se concluye 
que son estables. La clasificación establecida tiene particular importancia cuando se utiliza el método de 
Ritz para resolver problemas de autovalores porque es bien conocido que las funciones de aproximación 
deben satisfacer solamente las condiciones de contorno estables del problema [15]. En este trabajo se 
aplica esta propiedad al tratamiento de las condiciones de transición, dado que en los ejemplos analíticos 
solamente fueron tenidas en cuanta las condiciones de transición estables. 

Si se adoptan diferentes valores y/o valores límites de las funciones 
12R
c  y ( )c

Tc  en las ecuaciones (67) y 
(69) se pueden generar diferentes situaciones. A continuación se detallan algunos de los casos más rele-
vantes: 
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 No hay rótula interna y la articulación es perfectamente rígida 

 
12

( ), 0.c
R Tc c=∞ =  

( ) ( )
1 12 2, , , , ,x xc x t c x tφ φ+ −=

  
( ) ( )1 2 1 2, , , , .Q c x t Q c x t− +=  

 Rótula interna y la articulación es perfecta 

 

12

( )0, 0.c
R Tc c= =  

( ) ( )1 2 1 2, , , , 0,M c x t M c x t− += =   

( ) ( )1 2 1 2, , , , .Q c x t Q c x t− +=  

 Rótula interna soportada por un apoyo rígido 

 

12

( )0, .c
R Tc c= = ∞  

( )2, , 0,w c x t =  

( ) ( )1 2 1 2, , , , 0.M c x t M c x t− += =  

 No hay rótula interna. Punto intermedio soportado por un apoyo 
rígido 

 

12

( ), c
R Tc c=∞ =∞  

( )2, , 0,w c x t =  

( ) ( )
1 12 2, , , , .x xc x t c x tφ φ+ −=  

 Rótula interna soportada por una restricción traslacional 

 

12

( )0, 0 c
R Tc c= < <∞  

( ) ( )1 2 1 2, , , , 0,M c x t M c x t− += =  

( ) ( ) ( ) ( )( )
1 2 1 2 2 2, , , , , , .c

TQ c x t Q c x t c x w c x t− +− =  

 Rótula interna restringida elásticamente contra rotación 

 

 

12

( )0 , 0.c
R Tc c< <∞ =  

( ) ( )1 2 1 2, , , , ,Q c x t Q c x t− +=  

( ) ( )

( ) ( ) ( )( )
12 1 1

1 2 1 2

2 2 2

, , , ,

, , , , .R x x

M c x t M c x t

c x c x t c x tφ φ

+ −

+ −

= =

=− −
 

 Rótula interna restringida elásticamente contra rotación y soporta-
da por un apoyo rígido 

 ( )2, , 0,w c x t =  



54 M.V. Quintana, R.O. Grossi 

 

 

12
0 , .R Tcc c< <∞ =∞  

( ) ( )

( ) ( ) ( )( )
12 1 1

1 2 1 2

2 2 2

, , , ,

, , , ,R x x

M c x t M c x t

c x c x t c x tφ φ

+ −

+ −

= =

=− −
 

 Rótula interna restringida elásticamente contra rotación y soporta-
da por una restricción traslacional 

 

12

( )0 , 0 .c
R Tc c< <∞ < <∞  

( ) ( ) ( ) ( )( )
1 2 1 2 2 2, , , , , , .c

TQ c x t Q c x t c x w c x t− +− =  

( ) ( )

( ) ( ) ( )( )
12 1 1

1 2 1 2

2 2 2

, , , ,

, , , , .R x x

M c x t M c x t

c x c x t c x tφ φ

+ −

+ −

= =

=− −
 

En todos los casos valen las condiciones de transición dadas por: 

( ) ( ) ( )2 2 2, , , , , , ,w c x t w c x t w c x t− += =  

( ) ( ) ( )
2 2 22 2 2, , , , , ,x x xc x t c x t c x tφ φ φ+ −= = , 

( ) ( )12 2 12 2, , , , 0H c x t H c x t− ++ = , [ ]2 ,x a b∈  

 

Tabla 1. Coeficientes de frecuencias ( )2 2
22 ,i i l h Dω π ρΩ =  de una placa cuadrada SSSS, ortótropa, 

( )1 2 12 12 2 13 2 23 225, 0,25, 0,5; 0,2; 5 6E E G E G E G E kμ= = = = = = . 

c l  h l   1Ω  2Ω  3Ω  4Ω  5Ω  6Ω  

0.5 0.01 Presente 1.8456 5.0528 10.2368 17.7072 20.0710 21.1406 

  [11] 1.8427 5.0487 10.0904 17.0579 20.0710 21.1406 

 0.1 Presente 1.7213 4.4507 8.2121 11.7257 12.4929 12.7018 

  [11] 1.7213 4.4507 8.1312 11.7257 12.4071 12.4929 

0.3 0.1 Presente 1.8099 4.5538 8.2983 9.4361 10.5345 12.7707 

  [11] 1.8099 4.5537 8.2246 9.4361 10.5344 12.4765 

 0.01 Presente 1.9605 5.2046 10.3815 13.6660 15.1985 17.8330 

  [11] 1.9567 5.1994 10.2356 13.6649 15.1913 17.1857 

0.1 0.01 Presente 2.6661 6.0018 9.7783 10.9750 12.3748 17.1243 

  [11] 2.6525 5.9892 9.7685 10.8336 12.3418 17.6070 

 0.1 Presente 2.2646 5.0247 7.3776 8.6300 9.1138 12.0519 

  [11] 2.2640 5.0240 7.3773 8.5561 9.1127 12.0043 
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6. EJEMPLOS ANALÍTICOS 

En la Tabla 1 se muestra una comparación de los valores de los coeficientes de frecuencia 
( )2 2

22/ / , 1,..., 6,i i l h D iω π ρΩ = =  para una placa cuadrada, ortótropa, simplemente apoyada en to-
dos sus lados y para tres posiciones distintas de la línea de rótulas. l  denota la longitud de la placa y h  su 
altura. Los parámetros característicos del material están dados por: relación de Poisson 12 0,25μ = , rela-
ción de módulos de elasticidad 1 2/ 25E E = , módulos de corte 12 2/ 0, 5;G E = 13 2/ 0, 5;G E =

 
23 2/ 0,2G E = . En todos los casos se utilizó un factor de corrección por corte 5/6.k =

 Los valores fueron obtenidos mediante una combinación del método de Ritz y el método de la función 
de penalidad [15]. Se observa una adecuada concordancia entre los valores numéricos descritos y los pro-
porcionados en la referencia [11], que fueron obtenidos aplicando el método de solución de Levy en com-
binación con la técnica de descomposición de dominios. El método descrito en la Ref. [11] solo puede ser 
empleado en placas con dos lados paralelos simplemente apoyados, mientras que la metodología utilizada 
en el presente trabajo permite considerar condiciones de contorno arbitrarias incluyendo restricciones 
elásticas. 

7. CONSIDERACIONES FINALES 

El principio de Hamilton ha sido rigurosamente formulado al definir el espacio de las funciones admisi-
bles D  y el de las direcciones admisibles aD  del funcional involucrado. Luego se aplicaron las técnicas 
del cálculo de variaciones y se demostró que es una formidable herramienta matemática para obtener, a 
partir de la teoría de placas de primer orden (FSDT), los problemas de contorno que describen el compor-
tamiento estático y dinámico de placas laminadas moderadamente gruesas de forma arbitraria con contor-
nos elásticamente restringidos y con una línea intermedia con rótulas restringidas contra rotación y trasla-
ción. Las ecuaciones diferenciales fundamentales que gobiernan los problemas descritos fueron obtenidas 
dividiendo el dominio de la placa en dos subdominios. Un producto esencial que proporcionó el cálculo 
de variaciones son las condiciones de contorno y en particular las condiciones de transición, tanto geomé-
tricas como naturales.  

Además se obtuvieron valores numéricos de los coeficientes de frecuencia de placas cuadradas ortótro-
pas, con líneas de rótulas en distintas posiciones, utilizando una combinación del método de Ritz y el 
método de la función de penalidad. 
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VARIATIONAL TREATMENT OF LAMINATED PLATES WITH AN INTERNAL 
LINE HINGE USING THE FIRST ORDER THEORY 

Abstract – The dynamical behaviour of plates with an arbitrarily located internal line hinge with elastics sup-
ports is of technological interest. A line hinge in a plate can be used to facilitate folding of gates or the opening 
of doors among other applications. A review of the literature has shown that there is only a limited amount of 
information for the vibration of thick laminated plates with line hinges and boundaries elastically restrained. 
The aim of this paper is to derive, by using the techniques of the calculus of variation, of the equations of mo-
tion and their associated boundary and transition conditions. The study is developed using the first order shear 
deformation plate theory (FSDT). 

Keywords – Plates, Line hinge, Calculus of variations, Boundary values problems. 
 


