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Resumo – Este trabalho tem como objetivo apresentar a aplicação de um esquema de diferenças centrais de 
O( x6) na solução da equação de Burgers’, demonstrando sua eficiência e facilidade de implementação. A partir 
de comparações com outros métodos propostos por outros autores, demonstra-se que este método é eficiente tão 
quanto vários outros, porém, de fácil formulação e implementação além de apresentar um baixo custo computa-
cional. 

Palavras-chave – Método das Diferenças Finitas, equação de Burgers’, Método de Cranck-Nicolson Method, 
Séries de Taylor. 

1. INTRODUÇÃO 

Para analisar a eficiência numérica do método das diferenças centrais de O( x6), neste trabalho será 
proposta como aplicação uma simplificação da equação de Navier-Stokes, também conhecida como equa-
ção de Burgers’. Nesta considera-se um gradiente de pressão nulo, em todas as direções, e que o escoa-
mento é tratado apenas na direção x, o que resulta na seguinte expressão: 
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com )()0,( 0 xuxu , ),(),0( txAtu  e ),(),( txBtLu x , sendo que  é a viscosidade cinemática e o do-
mínio computacional dado como xLx0  e 0t . 

O objetivo principal deste trabalho é demonstrar que a aplicação do método das diferenças centrais de 
O( x6) para a discretização dos termos espaciais juntamente com o método de Cranck-Nicolson O( x2) 
para o termo transiente é tão eficiente quanto vários outros métodos propostos na bibliografia aberta, en-
tre eles pode-se citar [1-5] entre outros, porém, com a vantagem de ser de fácil implementação e de baixo 
custo computacional. 

2. FINITE DIFFERENCE METHOD 

Para problemas físicos governados por equações diferenciais parciais, para simulação numérica de tais 
problemas é necessário um método numérico para aproximar algumas destas derivadas. Neste trabalho, o 
Método das Diferenças Finitas será utilizado. Considerando uma função u(x) e sua derivada no ponto x, 
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Se )( xxu é expandido em séries de Taylor em torno de x, tem-se 
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Substituindo a (3) na (2), resulta 
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que é uma aproximação de primeira ordem, isto é, o erro de truncamento é O( x). Escrevendo u em séries 
de Taylor para i+1 e i–1, tem-se [6], 
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Reorganizando a (5), obtém-se a diferença pra frente, 
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Similarmente, para a (6), tem-se a diferença pra trás, 
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Finalmente, somando-se as (5) e (6), obtém-se a expressão conhecida como diferença central de segun-
da ordem de u, 
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Para a diferença central de O( x4), Chung (2002) apresenta a seguinte fórmula, 
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Uma contribuição especial deste trabalho é a construção de uma aproximação de O( x6) para diferenças 
centrais pelas séries de Taylor. Utilizando a mesma idéia da (5) e (6) para i–2, i–3, i+2 e i+3 tem-se, 
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Pelas (5), (6), (11), (12), (13) e (14) escreve-se a expressão, 
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Pela (15), estabelece-se uma expressão para a derivada segunda de u a partir do seguinte sistema linear, 
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Resultando, assim a expressão, 
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3. FORMULAÇÃO NUMÉRICA 

Considerando 
2

2u
xx

E , em outros palavras, 
2

2uE  e utilizando o método de Cranck-Nicolson 

na (1), obtém-se,  
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Para a discretização espacial será utilizado o método das diferenças centrais. O sistema linear será cons-
truído como segue: 

Nó 1 e Nó NNós – Condição de contorno em x = 0 e x = 1, respectivamente. Obs.: Nnós: quantidade to-
tal de nós na malha. 

Nó 2 e Nó NNós–1 – Diferença Central O( x2): 
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Nó 3 e Nó NNós–2 – Diferença Central O( x4): 
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Outros Nós – Diferença Central O( x6): 
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4. APLICAÇÕES NUMÉRICAS 

Para solução do sistema linear que representa o problema proposto, utiliza-se uma rotina chamada 
DLSLRG da biblioteca Fortran . Devido à capacidade de memória computacional do computador utiliza-
do, foi possível neste problema trabalho, armazenar os coeficientes em uma matriz cheia. Para análise do 
erro cometido na solução numérica em comparação com a solução analítica, foi utilizada a norma L , 
sendo esta definida na forma: max|||||| annum uue , ou seja, a maior diferença em módulo, dentre todos 
os nós da malha computacional, na comparação da solução analítica com a numérica. Para demonstrar a 
eficiência desta proposta, a seguir apresentam-se cinco aplicações numéricas. 

Aplicação 1 – Nesta aplicação considera-se 1  na equação (1) com as seguintes condições de con-
torno e inicial:  

0),1(),0( tutu  e ).sen()0,( xxu  
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Aqui, utilizam-se os trabalhos [3,5,7,8]. Através da tabela 1, nota-se que os resultados do presente tra-
balho apresenta os melhores resultados, assim como o trabalho [5] que utiliza uma malha menos refinada 
em x, porém utiliza um passo no tempo dez vezes menor, ou seja, enquanto o presente trabalho utiliza-se 
de 1000 passos no tempo, [5] utiliza-se de 10000 passos (9000 passos no tempo a mais), ocasionando 
assim um custo computacional consideravelmente maior. 

Aplicação 2 – Nesta aplicação considera-se 01.0  com condições de contorno 1),0( tu  e 
2.0),1( tu  e uma condição inicial do tipo )1/()2.01()0,( eexu , onde )125.0(40 x . 

Nesta aplicação, os trabalhos [5,7,9,10] serviram de comparação dos resultados numéricos deste traba-
lho, juntamente com a solução analítica. Uma característica importante que pode ser evidenciada na tabe-
la 2, é que o presente trabalho e [5] necessitaram de uma discretização temporal mais refinada para obter 
bons resultados, enquanto que os outros trabalhos, com um refinamento maior no tempo, os resultados 
apresentam boa precisão, porém não competitiva com [5] e o presente trabalho. Uma característica impor-
tante da união do método de diferenças centrais de O( x6) com o método de Cranck-Nicolson de O( x2) é 

Tabela 1. Resultados numéricos para alguns pontos (  = 1 e t = 0.1). 

x 
Dag [7] Kutluay 

[8] 
Zhu [3] Xu [5] Presente Exacta 

[5] 
t = 0.00001 e x = 0.025 t = 0.0001 

x = 0.00625 
0.1 0.10949 0.10959 0.10947 0.10953 0.10953 0.10953 
0.2 0.20969 0.20989 0.20965 0.20978 0.20978 0.20979 
0.3 0.29175 0.29204 0.29168 0.29189 0.29188 0.29189 
0.4 0.34773 0.34809 0.34764 0.34791 0.34791 0.34792 
0.5 0.37136 0.37175 0.37125 0.37156 0.37157 0.37157 
0.6 0.35881 0.35921 0.35871 0.35903 0.35905 0.35904 
0.7 0.30969 0.31004 0.30961 0.30989 0.30991 0.30990 
0.8 0.22765 0.22792 0.22759 0.22781 0.22782 0.22781 
0.9 0.12060 0.12074 0.12057 0.12068 0.12069 0.12068 

Tabela 2. Comparação de resultados numéricos de vários autores e a solução exata. 

x 
Ali [9] Dag [7] Dogan 10] Xu [5] Presente Exacta [5] 

x = 0.028 x = 1/144 
t = 0.001 t = 0.025 t = 0.025 t = 0.05 t = 0.001 

0.056 1.000 1.000 1.000 1.000 1.000 1.000 
0.111 1.000 1.000 1.000 1.000 1.000 1.000 
0.167 1.000 1.000 1.000 1.000 1.000 1.000 
0.222 1.000 1.000 1.000 1.000 1.000 1.000 
0.278 0.999 0.999 0.999 0.998 0.998 0.998 
0.333 0.985 0.986 0.994 0.980 0.982 0.980 
0.389 0.847 0.850 0.848 0.859 0.852 0.847 
0.444 0.452 0.448 0.407 0.451 0.451 0.452 
0.500 0.238 0.236 0.232 0.237 0.237 0.238 
0.556 0.204 0.204 0.204 0.204 0.204 0.204 
0.611 0.200 0.200 0.200 0.200 0.200 0.200 
0.667 0.200 0.200 0.200 0.200 0.200 0.200 
0.722 0.200 0.200 0.200 0.200 0.200 0.200 
0.778 0.200 0.200 0.200 0.200 0.200 0.200 
0.833 0.200 0.200 0.200 0.200 0.200 0.200 
0.889 0.200 0.200 0.200 0.200 0.200 0.200 
0.944 0.200 0.200 0.200 0.200 0.200 0.200 
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a necessidade de um passo de tempo mais bem refinado, em contrapartida, graças a alta ordem de preci-
são do método de discretização espacial, isso nem sempre é necessário. 

Aplicação 3 – Aqui, será utilizados os valores 1 (tabela 3) e 1.0  (tabela 4) para a viscosidade ci-
nemática na equação (1). Com relação às condições de contorno e inicial tem-se, 

0),1(),0( tutu  e )1(4)0,( xxxu  

Como trabalhos para comparação, nesta aplicação utilizou-se [1,11]. A tabela 3 mostra que o presente 
trabalho alcança bons resultados quando comparados com os outros dois trabalhos e com a solução exata. 
É importante ressaltar que o passo de tempo utilizado foi intermediário quando comparado com os outros, 
onde [1] já obtém bons resultados com um t = 0.001 enquanto que [11] necessita de um passo de tempo 

t = 0.00001. Neste trabalho foi utilizado um passo de tempo t = 0.0001. 
Aplicação 4 – Para 1 na (1), nesta aplicação as condições de contorno e inicial estão de acordo com 

a seguinte solução analítica, 
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cujo domínio computacional é 10 x  e 10 t . 

Tabela 3. Comparação dos resultados para 1 . 

x t 
Ozis Hassanien Presente 

Exacta x = 1/80 x = 1/80 x = 1/160 
t = 0.00001 t = 0.001 t = 0.0001 

0.25 

0.1 0.26245 0.26148 0.26147 0.26148 
0.15 0.16157 0.16148 0.16147 0.16148 
0.20 0.09948 0.09947 0.09947 0.09947 
0.25 0.06111 0.06109 0.06109 0.06108 

0.50 

0.1 0.38314 0.38342 0.38342 0.38342 
0.15 0.23394 0.23405 0.23405 0.23406 
0.20 0.14287 0.14289 0.14289 0.14289 
0.25 0.08729 0.08723 0.08723 0.08723 

0.75 

0.1 0.28004 0.28157 0.28158 0.28157 
0.15 0.16948 0.16974 0.16974 0.16974 
0.20 010261 0.10265 0.10266 0.10266 
0.25 0.06230 0.06229 0.06229 0.06229 

Tabela 4. Comparação dos resultados para 1.0 . 

x t 
Ozis [11] Hassanien [1] Presente 

Exacta [1] x = 1/80 x = 1/80 x = 1/160 
t = 0.00001 t = 0.001 t = 0.0001 

0.25 

0.4 0.32679 0.31752 0.31751 0.31752 
0.6 0.25117 0.24614 0.24613 0.24614 
0.8 0.20270 0.19955 0.19955 0.19956 
1.0 0.16780 0.16559 0.16559 0.16560 

0.50 

0.4 0.59661 0.58454 0.58453 0.58454 
0.6 0.46581 0.45798 0.45797 0.45798 
0.8 0.37293 0.36740 0.36740 0.36740 
1.0 0.30253 0.29834 0.29834 0.29834 

0.75 

0.4 0.64680 0.64562 0.64566 0.64562 
0.6 0.50852 0.50268 0.50272 0.50568 
0.8 0.39117 0.38534 0.38537 0.38534 
1.0 0.30066 0.29586 0.29588 0.29586 
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Nesta aplicação uma comparação com os resultados numéricos apresentados por [4] é realizada. Na ta-
bela 5 fixa-se x = 1/100 e variam-se valores de t demonstrando que no presente trabalho o refinamento 
do passo de tempo melhora constantemente os resultados, enquanto que em [4] o mesmo não ocorre. A-
gora na tabela 6, fixa t = 1/1000 e variam-se valores de x e os resultados numéricos dos dois trabalhos 
mostram resultados que melhoram para cada x na mesma ordem de precisão. 

Application 5 – Para esta aplicação a equação governante é da forma, 2
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de erro será utilizada a seguinte solução analítica para comparações, 
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cujo domínio computacional é 10 x  e 10 t  com as condições de contorno e inicial estando de 
acordo com a solução analítica [12]. 

Os resultados numéricos apresentados na tabela 7 demonstram para um caso onde as condições de con-
torno dependem do tempo e do espaço, o método proposto apresenta excelentes resultados, encontrando 
no menor refinamento de x e t uma ordem de precisão em torno de 10-6. 

5. CONCLUSÕES 

Antes de qualquer coisa, é importante mencionar que o objetivo deste trabalho não foi de apresentar um 
método que fosse melhor ou pior que qualquer outro dentre os trabalhos aqui citados. Aqui, apresentou-se 
um esquema de alta ordem de diferenças centrais para a discretização espacial unido com um método de 
Cranck-Nicolson de segunda-ordem de fácil formulação e implementação. A utilização do método de 
Cranck-Nicolson da maneira que foi utilizado apresenta a facilidade de apenas necessitar da condição 
inicial para o início dos cálculos, lembrando que alguns métodos de alta ordem necessitariam de mais de 
um passo de tempo, o que dificultaria um pouco os cálculos. A utilização de um esquema de diferenças 
centrais de sexta-ordem possibilita a utilização de uma malha espacial pouco refinada, gerando assim um 
sistema matricial de pequena ordem e acelerando assim os cálculos, ressaltando que neste trabalho utili-
zou-se um armazenamento em matriz cheia por se tratar de um problema 1D, em problemas 2D ou 3D, o 
autor principal deste trabalho normalmente utiliza-se de armazenamento em vetores que contenham ape-
nas os coeficientes não nulos [13] do sistema matricial possibilitando assim um grande refinamento da 
malha computacional. Como proposta para trabalhos futuros, será aplicado este esquema na equação de 
Burgers’ 2D para analisar a eficiência do método em domínios mais complexos e se aproximando assim 
de problemas práticos da engenharia e da física. 

 

Tabela 5. Norma L  para x = 1/100. 

t 1/20 1/40 1/80 1/160 1/320 1/640 
Wang and 
Layton [4] 2.00  10-5 4.14  10-6 1.06  10-5 3.16  10-5 6.91  10-5 1.42  10-4 

Presente 8.16  10-4 4.24  10-4 2.28  10-4 1.30  10-4 8.26  10-5 5.98  10-5 

Tabela 6. Norma L  para t = 1/1000. 

x 1/5 1/10 1/20 1/40 1/80 
Wang and 
Layton [4] 6.12  10-2 1.10  10-2 1.63  10-3 2.24  10-4 2.93  10-5 

Presente 1.17  10-2 3.76  10-3 1.06  10-3 2.88  10-4 7.67  10-5 
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A NUMERICAL SOLUTION OF THE BURGERS’ EQUATION USING SIXTH-
ORDER CENTRAL FINITE DIFFERENCE 

Abstract – This paper aims to present the application of a scheme of central finite differences O (Dx6) to solve 
the Burgers´ equation, showing its efficiency and easiness for application. The paper starts with the comparisons 
with other methods proposed by other authors, and reveals that the method proposed is such efficient as the oth-
ers; however, bringing advantages of easy implementation and reduced computational costs. 

Keywords – Central Difference Method, Burgers’ equation, Cranck-Nicolson Method, Taylor series. 
 


