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Resumo — Este trabalho tem como objetivo apresentar a aplicagdo de um esquema de diferengas centrais de
O(Ax®) na solugdo da equagio de Burgers’, demonstrando sua eficiéncia e facilidade de implementagio. A partir
de comparagdes com outros métodos propostos por outros autores, demonstra-se que este método ¢ eficiente tdo
quanto varios outros, porém, de facil formula¢do e implementacgdo além de apresentar um baixo custo computa-
cional.

Palavras-chave — Método das Diferencas Finitas, equacdo de Burgers’, Método de Cranck-Nicolson Method,
Séries de Taylor.

1. INTRODUCAO

Para analisar a eficiéncia numérica do método das diferengas centrais de O(Ax®), neste trabalho sera
proposta como aplicagdo uma simplificacdo da equacao de Navier-Stokes, também conhecida como equa-
¢do de Burgers’. Nesta considera-se um gradiente de pressdao nulo, em todas as dire¢des, ¢ que o escoa-
mento ¢ tratado apenas na dire¢do x, o que resulta na seguinte expressao:
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com u(x,0)=uy(x), u(0,£)= A(x,t) e u(L,,t)=B(x,t), sendo que v ¢ a viscosidade cinemadtica e o do-
minio computacional dado como 0<x<L_ e ¢>0.

O objetivo principal deste trabalho ¢ demonstrar que a aplicagdo do método das diferengas centrais de
O(Ax®) para a discretizagdo dos termos espaciais juntamente com o método de Cranck-Nicolson O(Ax?)
para o termo transiente ¢ tdo eficiente quanto varios outros meétodos propostos na bibliografia aberta, en-

tre eles pode-se citar [1-5] entre outros, porém, com a vantagem de ser de facil implementacdo e de baixo
custo computacional.

2. FINITE DIFFERENCE METHOD

Para problemas fisicos governados por equagodes diferenciais parciais, para simulacdo numérica de tais
problemas ¢ necessario um método numérico para aproximar algumas destas derivadas. Neste trabalho, o
Meétodo das Diferengas Finitas sera utilizado. Considerando uma fung¢ao u(x) e sua derivada no ponto x,
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ou(x) ~ lim u(x+ Ax)—u(x) @)
ox Ax—0 Ax
Se u(x+ Ax) é expandido em séries de Taylor em torno de x, tem-se
2 A2 3 A3
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Substituindo a (3) na (2), resulta
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que € uma aproximacao de primeira ordem, isto &, o erro de truncamento € O(Ax). Escrevendo u em séries
de Taylor para i+1 e i—1, tem-se [6],
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Reorganizando a (5), obtém-se a diferenca pra frente,
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Similarmente, para a (6), tem-se a diferenca pra trds,
ou u; —u,;,
— | =—+0(Ax 8
( axl (Ax) ®)

Finalmente, somando-se as (5) e (6), obtém-se a expressdo conhecida como diferenca central de segun-
da ordem de u,
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Para a diferenca central de O(Ax*), Chung (2002) apresenta a seguinte formula,

Y2 O(Ax*) (10)

O’u|  —uy, +16u,, —30u, +16u,
o’ 12Ax7

Uma contribuicio especial deste trabalho ¢ a construgéio de uma aproximacio de O(Ax®) para diferencas
centrais pelas séries de Taylor. Utilizando a mesma idéia da (5) e (6) para i-2, i3, i+2 e i+3 tem-se,
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U,y =, +(— 3Ax)( ] & 3?") [6)( j & 3$x) [ax J ... (12)
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Pelas (5), (6), (11), (12), (13) e (14) escreve-se a expressao,
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Pela (15), estabelece-se uma expressao para a derivada segunda de u a partir do seguinte sistema linear,

a+b+c+d+e+ f+g=0 a=1/90
3a+2b+c—e—-2f-3g=0 b=-15/100
9a+4b+c+e+4f+9g=2 c=3/2
27a+8b+c—e—-8f —27g=0 = 1d=-49/18
8la+16b+c+e+16f +81g=0 e=3/2
243a+32b+c—e—32f -243g=0 f=-15/100
729a+64b+c+e+64f +729g=0 g=1/90

Resultando, assim a expressao,

[Zzgj _ 2uy5 = 27wy, +270u;, —I:z(;z:; 270u; | —27u; 5 +2u, 4 +O(A®)
i (16)
3. FORMULACAO NUMERICA
. OE 0 (u’ u’ . , .
Considerando 8_ :6_ 7 , em outros palavras, £ = By e utilizando o método de Cranck-Nicolson
X Ox

na (1), obtém-se,
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Para a discretizagao espacial sera utilizado o método das diferengas centrais. O sistema linear sera cons-
truido como segue:

N6 1 e N6 NNos — Condigao de contorno em x = 0 ¢ x = 1, respectivamente. Obs.: Nnds: quantidade to-
tal de nés na malha.

N6 2 e N6 NNés—1 — Diferenga Central O(Ax?):
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N6 3 e N6 NNés—2 — Diferenga Central O(Ax"):
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onde

onde
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Outros No6s — Diferenga Central O(Ax°):
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4. APLICACOES NUMERICAS

Para solugdo do sistema linear que representa o problema proposto, utiliza-se uma rotina chamada
DLSLRG da biblioteca Fortran®. Devido & capacidade de memoria computacional do computador utiliza-
do, foi possivel neste problema trabalho, armazenar os coeficientes em uma matriz cheia. Para analise do
erro cometido na solugdo numérica em comparagdo com a solugdo analitica, foi utilizada a norma L.,
sendo esta definida na forma: ||e||, = u,, —u ou seja, a maior diferenga em médulo, dentre todos

num an |max 4
os n6s da malha computacional, na comparacao da solucao analitica com a numérica. Para demonstrar a
eficiéncia desta proposta, a seguir apresentam-se cinco aplicacdes numéricas.
Aplicagido 1 — Nesta aplicagdo considera-se v =1 na equag¢do (1) com as seguintes condi¢des de con-
torno e inicial:

u(0,6)=u(1,1) =0 e u(x,0)=sen(r.x)
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Tabela 1. Resultados numéricos para alguns pontos (U =1e¢=0.1).

Dag [7] | Kutluay Zhu [3] Xu [5] Presente Exacta
x [8] [S]
At=0.00001 e Ax = 0.025 Ar=0.0001
Ax =0.00625

0.1 0.10949 0.10959 0.10947 0.10953 0.10953 0.10953
0.2 0.20969 0.20989 0.20965 0.20978 0.20978 0.20979
0.3 0.29175 0.29204 0.29168 0.29189 0.29188 0.29189
0.4 0.34773 0.34809 0.34764 0.34791 0.34791 0.34792
0.5 0.37136 0.37175 0.37125 0.37156 0.37157 0.37157
0.6 0.35881 0.35921 0.35871 0.35903 0.35905 0.35904
0.7 0.30969 0.31004 0.30961 0.30989 0.30991 0.30990
0.8 0.22765 0.22792 0.22759 0.22781 0.22782 0.22781
0.9 0.12060 0.12074 0.12057 0.12068 0.12069 0.12068

Tabela 2. Comparagao de resultados numéricos de varios autores e a solucdo exata.

Ali[9] | Dag[7] [Dogan10] | Xu[5] |Presente | Exacta [5]
x Ax = 0.028 Ax = 1/144
At=0.025 [ At=0.025 | Ar=0.05 [ Ar=0.001 | Ar=0.001
0.056 | 1.000 1.000 1.000 1.000 1.000 1.000
0.111 1.000 1.000 1.000 1.000 1.000 1.000
0.167 | 1.000 1.000 1.000 1.000 1.000 1.000
0222 | 1.000 1.000 1.000 1.000 1.000 1.000
0278 | 0.999 0.999 0.999 0.998 0.998 0.998
0333 | 0.985 0.986 0.994 0.980 0.982 0.980
0389 | 0.847 0.850 0.848 0.859 0.852 0.847
0444 | 0452 0.448 0.407 0.451 0.451 0.452
0.500 | 0.238 0.236 0.232 0.237 0.237 0.238
0.556 | 0.204 0.204 0.204 0.204 0.204 0.204
0.611 | 0.200 0.200 0.200 0.200 0.200 0.200
0.667 | 0.200 0.200 0.200 0.200 0.200 0.200
0.722 | 0.200 0.200 0.200 0.200 0.200 0.200
0.778 | 0.200 0.200 0.200 0.200 0.200 0.200
0.833 | 0.200 0.200 0.200 0.200 0.200 0.200
0.889 | 0.200 0.200 0.200 0.200 0.200 0.200
0.944 | 0.200 0.200 0.200 0.200 0.200 0.200

Aqui, utilizam-se os trabalhos [3,5,7,8]. Através da tabela 1, nota-se que os resultados do presente tra-
balho apresenta os melhores resultados, assim como o trabalho [5] que utiliza uma malha menos refinada
em Ax, porém utiliza um passo no tempo dez vezes menor, ou seja, enquanto o presente trabalho utiliza-se
de 1000 passos no tempo, [5] utiliza-se de 10000 passos (9000 passos no tempo a mais), ocasionando
assim um custo computacional consideravelmente maior.

Aplicacio 2 — Nesta aplicagdo considera-se v=0.01 com condi¢des de contorno u(0,7)=1 e
u(1,¢) =0.2 e uma condigdo inicial do tipo u(x,0) =(1+0.2¢")/(1+¢"), onde n =40(x—0.125).

Nesta aplicagdo, os trabalhos [5,7,9,10] serviram de comparagdo dos resultados numéricos deste traba-
lho, juntamente com a solugdo analitica. Uma caracteristica importante que pode ser evidenciada na tabe-
la 2, é que o presente trabalho e [5] necessitaram de uma discretizagdo temporal mais refinada para obter
bons resultados, enquanto que os outros trabalhos, com um refinamento maior no tempo, os resultados
apresentam boa precisdo, porém nao competitiva com [5] e o presente trabalho. Uma caracteristica impor-
tante da unido do método de diferencas centrais de O(Ax°®) com o método de Cranck-Nicolson de O(Ax?) é
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Tabela 3. Comparacao dos resultados para v =1.

Ozis Hassanien Presente
x t Ax=1/80 Ax =1/80 Ax =1/160 Exacta
At=0.00001 | Ar=0.001 At =0.0001
0.1 0.26245 0.26148 0.26147 0.26148
025 0.15 0.16157 0.16148 0.16147 0.16148
0.20 0.09948 0.09947 0.09947 0.09947
0.25 0.06111 0.06109 0.06109 0.06108
0.1 0.38314 0.38342 0.38342 0.38342
0.50 0.15 0.23394 0.23405 0.23405 0.23406
0.20 0.14287 0.14289 0.14289 0.14289
0.25 0.08729 0.08723 0.08723 0.08723
0.1 0.28004 0.28157 0.28158 0.28157
075 0.15 0.16948 0.16974 0.16974 0.16974
0.20 010261 0.10265 0.10266 0.10266
0.25 0.06230 0.06229 0.06229 0.06229
Tabela 4. Comparacao dos resultados para v =0.1.
Ozis [11] Hassanien [1] Presente
X t Ax =1/80 Ax =1/80 Ax=1/160 Exacta [1]
At =0.00001 At=0.001 At =0.0001
0.4 0.32679 0.31752 0.31751 0.31752
0.25 0.6 0.25117 0.24614 0.24613 0.24614
0.8 0.20270 0.19955 0.19955 0.19956
1.0 0.16780 0.16559 0.16559 0.16560
0.4 0.59661 0.58454 0.58453 0.58454
0.50 0.6 0.46581 0.45798 0.45797 0.45798
0.8 0.37293 0.36740 0.36740 0.36740
1.0 0.30253 0.29834 0.29834 0.29834
0.4 0.64680 0.64562 0.64566 0.64562
0.75 0.6 0.50852 0.50268 0.50272 0.50568
' 0.8 0.39117 0.38534 0.38537 0.38534
1.0 0.30066 0.29586 0.29588 0.29586

a necessidade de um passo de tempo mais bem refinado, em contrapartida, gragas a alta ordem de preci-
sdo do método de discretizagdo espacial, isso nem sempre é necessario.

Aplicagdo 3 — Aqui, sera utilizados os valores v =1 (tabela 3) e v =0.1 (tabela 4) para a viscosidade ci-
nematica na equagao (1). Com relagdo as condi¢des de contorno e inicial tem-se,

u(0,)=u(1,t)=0 e u(x,0) =4x(1—x)

Como trabalhos para comparacdo, nesta aplicagao utilizou-se [1,11]. A tabela 3 mostra que o presente
trabalho alcanga bons resultados quando comparados com os outros dois trabalhos e com a solucdo exata.
E importante ressaltar que o passo de tempo utilizado foi intermediario quando comparado com os outros,
onde [1] ja obtém bons resultados com um Az = 0.001 enquanto que [11] necessita de um passo de tempo
At=0.00001. Neste trabalho foi utilizado um passo de tempo Az = 0.0001.

Aplicagao 4 — Para v =1 na (1), nesta aplicac@o as condigdes de contorno e inicial estdo de acordo com
a seguinte solu¢do analitica,

2sinx

u(x,t)=——
Cosx +e

cujo dominio computacional ¢ 0 <x <1 e 0<¢<1.
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Tabela 5. Norma L., para Ax = 1/100.
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At 1/20 1/40 1/80 1/160 1/320 1/640
Wang and 5 6 5 5 5 4
Layton [4] | 20010 4.14 x 10" 1.06 x 107 3.16 x 107 6.91 x 107 1.42 x 107

-4 -4 -4 -4 -5 -5
Presente 8.16x 10 424 x 10 228 x 10 1.30 x 10 8.26 x 10 5.98 x 10
Tabela 6. Norma L., para At = 1/1000.

Ax 1/5 1/10 1/20 1/40 1/80
Wangand | (15 102 | 110x10% | 1.63x10° | 224x10* | 2.93x10°
Layton [4]

Presente 1.17 x 102 3.76 x 107 1.06 x 107 2.88x10* 7.67 x 107

Nesta aplicagdo uma comparagdo com os resultados numéricos apresentados por [4] ¢é realizada. Na ta-
bela 5 fixa-se Ax = 1/100 e variam-se valores de At demonstrando que no presente trabalho o refinamento
do passo de tempo melhora constantemente os resultados, enquanto que em [4] 0 mesmo ndo ocorre. A-
gora na tabela 6, fixa Ar = 1/1000 e variam-se valores de Ax e os resultados numéricos dos dois trabalhos
mostram resultados que melhoram para cada Ax na mesma ordem de precisao.

: 0 ’
Application 5 — Para esta aplicag¢do a equagdo governante ¢ da forma, a—L; + u@_u = ou

o e para analise
X Ox

de erro sera utilizada a seguinte solug@o analitica para comparagdes,

2x

ube =17,

cujo dominio computacional ¢ 0 <x<1 e 0<¢<1 com as condi¢des de contorno e inicial estando de
acordo com a solug¢do analitica [12].

Os resultados numéricos apresentados na tabela 7 demonstram para um caso onde as condigdes de con-
torno dependem do tempo e do espacgo, o método proposto apresenta excelentes resultados, encontrando
no menor refinamento de Ax e Af uma ordem de precisio em torno de 107,

5. CONCLUSOES

Antes de qualquer coisa, ¢ importante mencionar que o objetivo deste trabalho ndo foi de apresentar um
método que fosse melhor ou pior que qualquer outro dentre os trabalhos aqui citados. Aqui, apresentou-se
um esquema de alta ordem de diferencas centrais para a discretizagdo espacial unido com um método de
Cranck-Nicolson de segunda-ordem de facil formulagdo e implementagdo. A utilizagdo do método de
Cranck-Nicolson da maneira que foi utilizado apresenta a facilidade de apenas necessitar da condi¢do
inicial para o inicio dos calculos, lembrando que alguns métodos de alta ordem necessitariam de mais de
um passo de tempo, o que dificultaria um pouco os calculos. A utilizagdo de um esquema de diferengas
centrais de sexta-ordem possibilita a utilizagdo de uma malha espacial pouco refinada, gerando assim um
sistema matricial de pequena ordem e acelerando assim os calculos, ressaltando que neste trabalho utili-
Zou-se um armazenamento em matriz cheia por se tratar de um problema 1D, em problemas 2D ou 3D, o
autor principal deste trabalho normalmente utiliza-se de armazenamento em vetores que contenham ape-
nas os coeficientes nao nulos [13] do sistema matricial possibilitando assim um grande refinamento da
malha computacional. Como proposta para trabalhos futuros, sera aplicado este esquema na equagdo de
Burgers’ 2D para analisar a eficiéncia do método em dominios mais complexos e se aproximando assim
de problemas praticos da engenharia e da fisica.
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A NUMERICAL SOLUTION OF THE BURGERS’ EQUATION USING SIXTH-
ORDER CENTRAL FINITE DIFFERENCE

Abstract — This paper aims to present the application of a scheme of central finite differences O (Dx6) to solve
the Burgers” equation, showing its efficiency and easiness for application. The paper starts with the comparisons
with other methods proposed by other authors, and reveals that the method proposed is such efficient as the oth-
ers; however, bringing advantages of easy implementation and reduced computational costs.

Keywords — Central Difference Method, Burgers’ equation, Cranck-Nicolson Method, Taylor series.



