

ESCOAMENTO BIFÁSICO ÓLEO-ÁGUA EM DUTOS TERRESTRES

OLDRICH JOEL ROMERO¹, ISABELA BRAGA PEREIRA¹, HUGO CANDIÁ SAAD²

¹Universidade Federal do Espírito Santo – UFES, campus São Mateus Rodovia BR 101 Norte, km 60, Litorâneo, CEP 29.932-540, São Mateus, ES, Brasil ²Agencia Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP Av. Rio Branco 65, 22º andar, CEP 20.090-004, Rio de Janeiro, RJ, Brasil

(Recibido 27 de febrero de 2015, para publicación 10 de abril de 2015)

Resumo – Ferramentas computacionais de simulação de escoamento multifásico em dutos de transporte de petróleo, são de grande importância para determinação da viabilidade econômica da produção em campos petrolíferos. O presente artigo apresenta a modelagem matemática e numérica do escoamento bifásico de petróleo em um duto *onshore* parcialmente submerso. O comportamento bifásico do óleo pesado de 13,2 °API é traduzido pela correlação de Dukler. A viscosidade do óleo é considerada dependente da temperatura e da densidade API do óleo mediante a correlação de Hossain. O duto transporta o petróleo desde uma estação coletora até um centro de armazenamento e é formada por três trechos. O primeiro e terceiro trechos são não aterrados e estão em contato com o meio ambiente externo. O trecho intermediário é assentado no leito de um rio e é a parte crítica do oleoduto, pois, elevadas perdas de calor são observadas. A influência principalmente do tipo de isolamento do duto nos gradientes de pressão e de temperatura foi analisada com o auxílio do *software* comercial Pipesim®. Os resultados mostram que a utilização de isolamento quando adequadamente projetado, em termos de espessura e qualidade do material, é de extrema importância para manter a troca de calor em níveis baixos, de tal forma a garantir a movimentação dos fluidos em trechos longos sem comprometer o funcionamento do sistema.

Palavras-chave - Troca de calor, oleoduto, escoamento bifásico, perda de carga, Pipesim.

1. INTRODUÇÃO

A gestão integrada e otimizada dos processos de exploração e produção é considerada estratégica para o avanço do setor petrolífero já que, por um lado, se depara com um vasto e crescente arsenal tecnológico, e por outro, com desafios importantes como o transporte de fluidos por linhas cada vez mais longas e muitas vezes sob condições adversas. O escoamento dos fluidos desde o reservatório até as instalações de superfície é dividido comumente em três etapas, conforme ilustrado de forma simplificada no corte vertical da Fig. 1: recuperação, elevação e coleta. O esquema apresentado corresponde a um sistema de produção terrestre. Cada etapa é altamente complexa devido ao processo ser dinâmico e ter fenômenos nas escalas microscópicas e macroscópicas. A recuperação trata do escoamento no interior da rochareservatório, desde as fronteiras distantes até o fundo do poco [1]. A elevação se refere ao escoamento no interior da coluna de produção desde o fundo do poço até a cabeça do poço [2, 3]. A coluna por sua vez está contida no poço previamente perfurado, revestido e cimentado. É utilizado o termo poço completado, para nomear o poço equipado para produzir os fluidos vindos do reservatório de forma segura e controlada. A etapa de coleta refere-se ao escoamento dos fluidos desde a cabeca do poco até as instalações onde são processadas [4]. O processamento do petróleo consiste na separação dos fluidos em água, gás, óleo e sedimentos. Destes, o fluido de interesse é o óleo. A água é enquadrada antes de ser descartada. O gás normalmente é queimado uma vez que se apresenta em quantidades que tornam seu aproveitamento antieconômico. Os sedimentos são também descartados após atender a legislação ambiental.

Durante a produção de petróleo, o escoamento é normalmente uma mistura de água, óleo, gás e sedimentos, que confira um escoamento multifásico. Na medida que ascende em direção à superfície o escoamento apresenta diversos padrões que dependem da dinâmica do processo produtivo. De forma simplificada, o escoamento pode ser tratado como bifásico, no qual uma das fases é gasosa e a outra líquida. Este

Fig. 1. Etapas do escoamento do petróleo, desde a rocha-reservatório até as instalações de superfície.

tipo de escoamento é frequentemente encontrado na coluna de produção no interior do poço e nos dutos de produção e pode ocorrer em trechos verticais, inclinados ou horizontais. Correlações, como por exemplo, as propostas por Hagedorn e Brown (1965) [5], Duns e Ross (1963) [6], Beggs e Brill (1963) [7] e Oliemans (1976) [8], foram desenvolvidas para facilitar a análise de escoamentos desta natureza.

Na etapa de coleta a engenharia de dutos se apresenta como uma especialidade de extrema importância em que uma das principais linhas de estudo é a denominada garantia de escoamento. Possui como principais objetivos identificar, qualificar e atenuar problemas operacionais, principalmente os decorrentes do escoamento de óleos pesados, uma vez que, pode trazer grandes dificuldades para o escoamento através da tubulação. Como exemplo, podemos citar problemas de corrosão e desgaste precoce, além da deposição de hidratos, parafinas e asfaltenos, resultando em uma grande perda de carga e até mesmo obstrução dos dutos. A troca de calor é um problema de interesse não apenas na indústria de petróleo, em [9] o efeito da rugosidade nas paredes é estudado.

Embora existam estudos para substituição dos combustíveis fosseis por energias alternativas [10, 11], sua utilização continuará sendo predominante ainda por várias décadas, assim seu estudo é importante. Desta forma, no contexto da indústria do petróleo, o presente artigo pretende expor a influência da perda de carga e da perda de calor na movimentação do fluido bifásico no interior da tubulação.

2. ESPECIFICAÇÃO DO PROBLEMA

O problema abordado trata do escoamento da mistura óleo-água em um duto terrestre sujeito a perda de calor. O objetivo é determinar, mediante simulação numérica, a influência da perda de calor no comportamento do fluido.

Conforme ilustrado na Fig. 2a, o sistema terrestre por onde a mistura escoa é formado por:

- (i) uma estação coletora que recebe a produção proveniente de 15 poços *onshore* de baixa vazão com pressão de 5 kg/cm² e temperatura de 66,7°C. Este ponto é onde o escoamento se inicia e as condições de contorno de entrada devem se impostas;
- (ii) um oleoduto de 3.600 m e 4 pol de diâmetro por onde são escoados $21 \text{ m}^3/\text{d}$ de óleo; e
- (iii) um centro de armazenamento e exportação localizada em terra que recebe os fluidos. Este ponto é onde o escoamento termina e as condições de contorno de saída devem se impostas.

O oleoduto é composto por três segmentos denominados de "Trecho 1", com 802 m de comprimento, "Trecho 2" com 203 m de comprimento, e "Trecho 3" com 2.595 m de comprimento. Todos os trechos possuem diâmetro de 4 pol, espessura de 0,251 pol e rugosidade de 0,001 pol. Nos trechos 1 e 3 a tubulação está suspensa em terra firme (não é aterrada) sendo a temperatura ambiente de 26°C. Já no trecho 2 a

Fig. 2. (a) caminho percorrido pelos fluidos, fonte: Google Earth; (b) seção transversal da tubulação mostrando a troca de calor entre o fluido quente e o meio ambiente mais frio.

tubulação passa pelo leito do rio a uma profundidade de 6 m e uma temperatura de 16°C. É neste trecho onde é observado uma acentuada perda de calor dos fluidos transportados e, portanto, a necessidade de estudos quanto à utilização de isolamento apropriado. O isolamento utilizado para este estudo de caso foi o base asfalto, tipicamente usado na indústria de petróleo.

Os comprimentos dos trechos são apresentados de forma equivalente a trechos retos, ou seja, todas as curvas e joelhos da tubulação foram convertidos em comprimentos de trecho reto, com perda de carga equivalente. As propriedades dos fluidos utilizando o modelo *blackoil* são: razão gás/óleo de 24, 9 m³/m³, volume de água e sedimentos de 30%, densidade relativa do gás de 0,66, densidade relativa da água de 1,02, densidade do óleo igual a 13,2 °API, contaminante H₂S de 0,06% e viscosidade do óleo morto sendo 69,4 cP a 93,3°C e 20.269 cP a 15,5°C. O fluido transportado é formado por uma fase líquida e outra gasosa, portanto é utilizada a correlação de Dukler [12] para determinar a perda de carga a qual considera escorregamento entre as fases. Já para a viscosidade do óleo, que é função da temperatura e da densidade API, selecionou-se a correlação de Hossain [13].

Para a troca de calor entre o fluido quente e o meio ambiente mais frio, as seguintes informações são necessárias: condutividade térmica da tubulação $k_{pipe} = 35 \text{ Wm}^{-1}\text{K}^{-1}$, condutividade térmica do isolamento $k_{layer} = 0.7 \text{ Wm}^{-1}\text{K}^{-1}$, condutividade térmica do óleo $k_{oleo} = 0.08 \text{ Wm}^{-1}\text{K}^{-1}$, coeficiente de troca de calor por convecção do ambiente externo $h_{ext} = 4 \text{ Wm}^{-2}\text{K}^{-1}$ para a velocidade do ar aproximada de 0,5 m/s [14].

3. MODELAGEM MATEMÁTICA

3.1. Correlação para o escoamento horizontal multifásico

A correlação de Dukler [12] permite determinar a perda de carga em uma tubulação horizontal originado pelo escoamento multifásico considerando o escorregamento entre as fases. Para a correta descrição do escoamento no interior de dutos é necessário o entendimento do gradiente de pressão dp/dl, onde p é a pressão e l é o comprimento ao longo do duto.

$$\frac{dp}{dl} = \left(\frac{dp}{dl}\right)_g + \left(\frac{dp}{dl}\right)_f + \left(\frac{dp}{dl}\right)_{acc} \tag{1}$$

O primeiro termo do lado direito da equação (1), subíndice "g", é o gradiente de pressão correspondente à ação da gravidade e é igual a $g\rho_k\Delta z/g_c$. No escoamento horizontal este componente é muito pequeno e pode, portanto, ser desprezada. O segundo termo com subíndice "f" é relativo à fricção e existe apenas quando em fluxo. A última parcela, subíndice "acc" refere-se à perda de carga devido à aceleração e de forma similar ao termo de atrito, existe apenas em condições dinâmicas.

As perdas por atrito são calculadas por $\left(\frac{dp}{dl}\right)_f = \frac{f \rho_k U_m^2}{2g_c D}$, onde g_c é a constante gravitacional que converte aceleração-gravidade em peso e D é o diâmetro interno do duto. Como o problema trata do escoamento de mais de uma fase, o computo desta equação embora pareça trivial o procedimento não é simples. As variáveis dependem de outras que pretendem traduzir matematicamente a complexa interação das fases no processo. Assim, a primeira variável a ser calculada é o peso específico da mistura ρ_k , que depende dos pesos específicos da fase líquida ρ_L e da fase gás ρ_g , da fração de líquido na entrada γ_L , da fração de gás na entrada γ_g e do *hold-up* do líquido H_L (a determinação deste parâmetro é detalhada no próximo parágrafo) sendo este igual a $\rho_k = \frac{\rho_L Y_L^2}{H_L} + \frac{\rho_g Y_g^2}{1-H_L}$. Outra variável necessária é o fator de fricção f obtido de $\frac{f}{f_n} = 1 + \frac{y}{1,281-0,478y+0,444y^2-0,094y^3+0,00843y^4}$, que é função de y e que, por sua vez, depende do comprimento do duto ln e da fração de líquido na entrada γ_L : $y = -l_n \gamma_L$. Já fn é obtido de $f_n = 0,0056 + 0,5N_{REK}^{-0,32}$ e o número de Reynolds N_{REK} é $N_{REK} = \frac{\rho_k U_m D}{\mu_{od}}$, sendo D o diâmetro interno do duto e μ_{od} a viscosidade do óleo morto, que varia com a temperatura do meio e do grau API do óleo através da correlação de Hossain *et al.* (1976) [13] detalhada na seção §3.2.

O valor do *hold-up* do líquido H_L necessário para o cálculo da densidade da mistura é obtido pelo processo iterativo seguinte:

- 1. A partir dos dados dos fluidos, estabelecer a densidade do líquido ρ_L ;
- 2. Estimar o hold-up H_L;
- 3. Com as informações (1) e (2), calcular o valor aproximado ρ_k ;
- 4. Calcular μ_{od} com a correlação de Hossain *et al.*, equação (3);
- 5. Com as informações (3) e (4), calcular o número de Reynolds N_{REK} ;
- 6. Com as informações (1) e (5), utilizando a Fig. 3, obter H_L ;
- Comparar os valores do *hold-up* estimado em (2), *H_L*, e calculado em (6), *H_L*, se o resultado desta comparação é maior do que uma tolerância determinada utilizar o valor calculado como nova estimativa e repetir o processo a partir da etapa (3). Caso contrário, a convergência é satisfeita e o processo iterativo termina com o *hold-up* do líquido requerido.

O termo da aceleração que compõe a equação (1) é definido $E_k = \frac{1}{g_c dp} \Delta \left[\frac{\rho_g \cdot U_{sg}^2}{(1-H_L)} + \frac{\rho_g \cdot U_{sl}^2}{H_L} \right]$, com U_m , U_{sg}

e U_{sl} sendo as velocidades média, do gás e do líquido respectivamente, ρ_L e ρ_g são o peso específico do líquido e do gás, respectivamente, e g_c a constante gravitacional que converte aceleração-gravidade em peso. Assim, a expressão final para o cálculo do gradiente de pressão em tubulações horizontais transportando fluidos multifásicos é representado pela equação (2) seguinte

Fig. 3. Representação gráfica da correlação de Dukler [12] para determinar o holdup do líquido H_L .

$$\frac{dp}{dl} = \frac{\left(\frac{dp}{dl}\right)_f}{1 - E_k} \tag{2}$$

3.2. Correlação para a viscosidade do óleo

A correlação de Hossain [13] permite determinar a viscosidade do óleo morto, μ_{od} , para diferentes valores da temperatura do fluido *T*. É válida para óleos pesados com densidade API, d_{API} , variando entre 10 < d_{API} < 22,3. Esta dependência é evidenciada por:

$$\mu_{od} = 10^A T^B \tag{3}$$

onde A e B são parâmetros dependentes da densidade API do óleo e são definidos por $A = -0,71523 d_{API} + 22,13766 e B = 0,269024 d_{API} - 8,268047.$

Quanto mais pesado o óleo, isto é, viscosidade elevada, seu aquecimento resulta em uma diminuição mais acentuada da viscosidade. Em outras palavras, a viscosidade de óleos pesados é mais afetada pela alteração da temperatura. Considerando que óleos pesados tem maior porcentagem de componentes parafínicos, a possibilidade de formar depósitos é, portanto, maior.

3.3. Resfriamento do óleo

A transferência de calor é uma manifestação do desequilíbrio térmico entre dois corpos. A natureza procura alcançar e manter o estado de equilíbrio. Esta condição é atingida quando a temperatura do corpo mais frio aumenta e a do corpo mais quente diminui. No caso específico do fluido multifásico sendo transportado pela tubulação, é feita a suposição que o "corpo mais frio", meio ambiente externo, é muito grande, portanto, sua temperatura aumentará muito pouco. Em outros termos práticos, a temperatura é considerada constante. Assim, o "corpo mais quente", que é o fluido no interior da tubulação, será resfriado procurando o equilíbrio com o ambiente que o circunda. Várias resistências térmicas são oferecidas para mitigar essa troca de calor. A equação (4) é a representação matemática do fluxo de calor Q, (Fig.

2b), tendo T_b como a temperatura do fluido quente no interior da tubulação, T_a a temperatura ambiente mais fria, externa à tubulação, e *A* a área perpendicular à direção do fluxo de calor.

$$Q = UA(T_b - T_a) \tag{4}$$

o coeficiente global de troca de calor, representado por *U*, depende de resistências térmicas oferecidas pelos corpos entre o fluido de interesse e o meio externo, de forma simplificada é calculado pela equação (5)

$$\frac{1}{U} = \frac{1}{h_{int}} + \frac{1}{k_{pipe}} + \frac{1}{k_{layer}} + \frac{1}{h_{ext}}$$
(5)

os parâmetros h_{int} (ou, para esse estudo, h_{oleo}), k_{pipe} , k_{layer} e h_{ext} são, respectivamente, o coeficiente de transferência de calor do líquido multifásico (óleo) escoando no interior do duto ("*int*"), a condutividade térmica da tubulação metálica ("*pipe*"), a condutividade térmica da camada de isolamento, no caso base asfalto, ("*layer*"), e o coeficiente de transferência de calor do ambiente externo ("*ext*") que pode ser ar ou água, a depender do trecho se é 1 e 3 ou 2.

Segundo Kaminsky [15], para um fluxo laminar com número de Reynolds $N_{REK} < 2.300$, h_{int} pode ser obtido utilizando $h_{int} = \frac{(2-H_L)h_{i1p}}{H_L^{2/3}}$, $h_{i1p} = \frac{k_L N u_{1p}}{D}$, $N u_{1p} = 1,86 N_{REK} Pr \left(\frac{D}{L}\right)^{1/3} \left(\frac{\mu_L}{\mu_W}\right)^{0,14}$, $Pr = \frac{\mu_L c_{pL}}{k_L}$, onde μ_L é a viscosidade do óleo; μ_W é a viscosidade da água; C_{pL} é a capacidade específica de calor do óleo; k_L a condutividade térmica do óleo; D o diâmetro da tubulação; Nu é o número de Nusselt e está compreendido entre 0 e 1; e Pr o número de Prandtl.

O segundo e terceiro termos do lado direito da equação (5) referem-se à troca de calor pela parede da tubulação e do isolamento térmico e são obtidos das equações $h_{pipe} = \frac{k_{pipe}}{\left(\frac{D}{2}+wt\right) ln\left(\frac{D}{2}+wt\right)} e h_{layer} =$

 $\frac{k_{layer}}{\left(\frac{D}{2}+wt\right) ln\left(\frac{\frac{D}{2}+wt+wt_{layer}}{\frac{D}{2}+wt}\right)},$ sendo k_{pipe} o coeficiente de troca de calor na parede do duto, k_{layer} e wt_{layer} o coefi-

ciente de troca de calor por condução e a espessura da camada de isolamento adjacente ao duto, respectivamente.

O último termo do lado direito da equação (5), que é o coeficiente de transferência de calor por convecção entre a camada de isolamento e o ambiente externo, h_{ext} , é obtido a partir das equações $h_{ext} = \frac{kNu_{ext}}{D+2wt}$, $Nu_{ext} = 0,53Ra^{0,25}$, Ra = PrGr e $Gr = \frac{L^3 \rho^2 \beta g \Delta T}{\mu^2}$. Onde *L* é o comprimento do duto, *Gr* e *Ra* são o número de Grashof e o de Rayleigh, respectivamente.

Dans as trashes 1 a 2 de tubulação sus são são starradas a se

Para os trechos 1 e 3 da tubulação, que são não aterrados, o coeficiente h_{ext} possui o valor típico de 4 Wm⁻²K⁻¹ para convecção natural com a velocidade aproximada do ar sendo 0,5 m/s.

3.4. Condições de contorno

Para resolver o sistema de equações é necessário delimitar seu domínio de solução, isto é, estabelecer as condições de contorno de tal forma a ter-se um sistema matemático bem posto e factível de ser resolvido.

Como o problema é unidimensional (Fig. 2a), condições de contorno na entrada e na saída da tubulação devem ser impostas, conforme mencionado na seção § 2. Neste trabalho duas situações, que em diante são identificados como caso 1 e caso 2, foram analisadas:

- Caso 1 Pressão insuficiente: pressão do fluido na entrada é prescrita em 5 kg/cm². Isto significa que a pressão do fluido na saída deve ser calculada; e
- Caso 2 Pressão suficiente fornecida por uma bomba centrífuga: pressão do fluido na saída é prescrita em 3 kg/cm². Significando que a pressão do fluido na entrada deve ser calculada.

Nas duas situações o óleo ingressa a uma vazão fixa de 21 m³/d e com temperatura igual a 67°C. A temperatura do ambiente externo quando ar é 26°C, e quando água é 16°C.

Fig. 4. Aplicação da técnica de Análise Nodal[®] em um sistema submarino de produção.

4. MODELO NUMÉRICO

O conjunto de equações apresentadas é resolvido utilizando o *software* Pipesim[®]. Este aplicativo é amplamente difundido na área de engenharia de elevação assim como na engenharia de dutos. O procedimento de obtenção da solução implementado no *software* é baseado na técnica denominada Análise Nodal[®], a qual consiste em segmentar a linha de fluxo em um determinado número de trechos, denotado pelo índice *j*. Cada trecho por sua vez é subdividido em pequenos intervalos denotado pelo índice *i*. Resolve-se então, as equações em cada intervalo progressivamente até atingir o ponto de interesse.

A técnica é comumente aplicada para análise de escoamento multifásico, visto que as propriedades PVT – pressão/volume/temperatura do fluido se alteram significantemente na medida em que o fluido é transportado. Além disso, a geometria por onde estes fluidos escoam pode sofrer mudanças no diâmetro, na rugosidade da parede interna e na inclinação do duto. A divisão em trechos *j* é para poder contemplar tubulações com diversas inclinações.

A integração numérica da equação (2) ao longo do comprimento do oleoduto *L* resulta na equação (6), que permite calcular o diferencial de pressão Δp do gradiente de pressão dp/dl para diferentes segmentos *n* da tubulação e *m* trechos da tubulação

$$\Delta p = \int_0^L \frac{dp}{dl} \, dL = \sum_{j=1}^m \sum_{i=1}^n \left(\frac{dp}{dL}\right)_{ij} \Delta L_{ij} \tag{6}$$

no caso em estudo m = 3. A Fig. 4 ilustra a aplicação da técnica para o caso de um sistema submarino de produção de petróleo.

5. RESULTADOS E DISCUSSÕES

5.1. Caso 1: Pressão insuficiente

O problema tratado neste artigo é detalhado na Fig. 2a, para este caso 1 a representação na simbologia Pipesim[®] é muito similar ao mostrado na Fig. 9, entretanto sem a presença da bomba.

Fig. 5. Variação da pressão ao longo da tubulação para o caso 1, considerando baixa troca de calor ($U = 1,135 \text{ W/m}^2/\text{K}$) nos trechos 1, 2 e 3.

Fig. 6. Variação da temperatura ao longo da tubulação para o caso 1, considerando baixa troca de calor ($U = 1,135 \text{ W/m}^2/\text{K}$) nos trechos 1, 2 e 3.

Inicialmente verifica-se se a pressão na estação coletora (entrada do duto) é capaz, ou não, de movimentar os fluidos até seu destino final no centro de armazenamento e exportação considerando baixa perda de calor ao longo do percurso, ou seja, o coeficiente global de troca de calor U é aproximadamente igual a 1,135 W/m²/K. A partir deste resultado, é necessário decidir quanto à utilização, ou não, de mecanismos artificiais para incrementar a pressão na entrada da tubulação.

O gradiente de pressão calculado é representado na Fig. 5 pela curva azul (na versão online) continua com quadrados cheios. Pode-se verificar que a diminuição da pressão ao longo do duto é não linear devido à presença de mais de uma fase, e que o fluido não possui energia suficiente para escoar até o final da tubulação de 3.600 m de comprimento, percorre apenas os primeiros 2.950 m. Assim, pode-se afirmar que nestas condições a produção não é viável. Destaca-se que ao atingir o final da tubulação o fluido deve ter ainda uma pressão mínima de 3 kg/cm² para vencer as resistências internas no tanque de armazenamento.

Já na Fig. 6 é representado o gradiente de temperatura para esta condição. O óleo ingressa na tubulação com uma temperatura de 67°C e diminui ao longo da tubulação até atingir a temperatura de aproximadamente 31°C em 2.950 m, que é a máxima distância que o fluido é movimentado. Como o "Trecho 1" tem

Fig. 7. Variação da pressão ao longo da tubulação para o caso 1, considerando alta troca de calor (trechos 1 e 3: U = 113,57W/m²/K; e trecho 2: U = 1.135,72 W/m²/K).

Fig. 8. Variação da Temperatura ao longo da tubulação para o caso 1, considerando alta troca de calor (trechos 1 e 3: $U = 113,57 \text{ W/m}^2/\text{K}$; e trecho 2: $U = 1135,72 \text{ W/m}^2/\text{K}$).

802 m de comprimento, o "Trecho 2" tem 203 m, e o "Trecho 3" 2.595 m, o óleo tende a procurar o equilíbrio com o meio ambiente externo que está a uma temperatura de 26°C e portanto, atinge somente parte do trecho 3.

Uma segunda análise pode ser obtida considerando troca de calor mais intensa em todos os trechos da tubulação. Isto significa que nos trechos 1 e 3 (que está exposto ao ar) o valor do coeficiente U seja igual a 113,6 $W/m^2/K$; e para o trecho 2 (que está submersa em água), o U seja 1.135,7 $W/m^2/K$.

As Figs. 7 e 8 ilustram os gráficos do gradiente de pressão e do gradiente de temperatura, respectivamente, para esse estudo. Como esperado, uma vez que as condições são mais desfavoráveis, uma queda de pressão mais acentuada ocorre ao longo do percurso, provocando um menor deslocamento do fluido em comparação ao caso abordado anteriormente (baixa troca de calor). Ou seja, é necessário uma energia adicional para movimentar o fluido. Isso pode ser visualizado na Fig. 8, onde a diminuição brusca e con-

Fig. 9. Representação na simbologia Pipesim® da nova configuração com a bomba na entrada do duto.

Fig. 10. Variação da pressão ao longo da tubulação para o caso 2, considerando baixa troca de calor ($U = 1,135 \text{ W/m}^2/\text{K}$) nos trechos 1, 2 e 3.

tínua da temperatura do fluido até o equilíbrio com o meio externo que é de 26°C, possibilita a chegada do mesmo apenas até o final do trecho 1.

A principal justificativa é que com a diminuição da temperatura do óleo, sua viscosidade aumente acentuadamente e eventualmente parafinas começam a precipitar. O aparecimento de depósitos parafinicos se manifesta pela quebra do equilíbrio de fases, causada pelo resfriamento do petróleo e/ou desprendimento das frações mais leves dissolvidas originalmente no petróleo. A parafina, quando exposta a uma determinada temperatura, chamada TIAC (temperatura de início do aparecimento dos cristais), precipita-se em formas de cristais e caracteriza-se assim uma fase sólida, depositando-se nas paredes internas dos dutos, obstruindo o fluxo e promovendo o aumento de perda de carga nas linhas de produção. Entre outros problemas, pode ocorrer a diminuição da vazão dos fluidos e o entupimento da seção do duto de produção.

5.2. Caso 2: Pressão suficiente fornecida por uma bomba centrífuga

Com base nos dados gerados define-se a utilização de uma bomba centrífuga com potência de 1.491,4 W e eficiência de 50%. A bomba será instalada na entrada da tubulação, logo depois da estação coletora. A nova configuração na simbologia Pipesim[®] é representada pela Fig. 9.

Confirmada a necessidade de incremento de pressão no sistema, a pergunta a ser respondida é qual é o nível de aumento de pressão a ser fornecido? Partindo com pressão prescrita de 3 kg/cm² na saída da tu-

Fig. 11. Variação da temperatura ao longo da tubulação para o caso 2, considerando baixa troca de calor ($U = 1,135 \text{ W/m}^2/\text{K}$) nos trechos 1, 2 e 3.

Fig. 12. Variação da pressão ao longo da tubulação para o caso 2, considerando alta troca de calor (trechos 1 e 3: U = 113,57 W/m²/K; e trecho 2: U = 1.135,72 W/m²/K).

bulação, que é a chegada do fluído ao centro de armazenamento e exportação, determina-se a pressão mínima na entrada da tubulação deve ser de 10,5 kg/cm². Isto é, para ocorrer o escoamento dos fluidos com baixa perda de calor do sistema ($U = 1,135 \text{ W/m}^2/\text{K}$), o perfil de pressão mínimo é o apresentado pela Fig. 10.

O perfil de temperatura, Fig. 11, para tal incremento de pressão apresenta uma diminuição menos acentuada em comparação ao caso 1, Fig. 6, atingindo o destino final com aproximadamente 29,5°C.

Novamente, partindo de uma pressão de 3 kg/cm² na saída da tubulação e considerando, de forma similar ao caso 1, transferência de calor elevada (isto é, trechos 1 e 3 com $U = 113,57 \text{ W/m}^2/\text{K}$ e trecho 2 com $U = 1135,72 \text{ W/m}^2/\text{K}$), obtém-se resultados dos gradientes de pressão e temperatura, Figs. 12 e 13, respectivamente. Como a perda de calor é mais acentuada, a temperatura do óleo sendo transportado diminui

Fig. 13. Variação da temperatura ao longo da tubulação para o caso 2, considerando alta troca de calor (trechos 1 e 3: $U = 113,57 \text{ W/m}^2/\text{K}$; e trecho 2: $U = 1135,72 \text{ W/m}^2/\text{K}$).

consideravelmente impactando na sua viscosidade, que por consequência aumenta e com isso o gradiente de pressão. A pressão na entrada do sistema passa de 10,5 kg/cm² (Fig. 10) para cerca de 24,6 kg/cm² (Fig. 12). Analisando-se os gráficos, nota-se uma diminuição mais significativa da pressão no trecho 2 devido ao fato da tubulação atravessar o leito do rio em temperaturas inferiores à temperatura ambiente.

Ao contrário das pequenas variações da temperatura obtidas com baixa troca de calor, Fig. 11, neste caso, com troca de calor elevada a temperatura tem uma diminuição brusca, de 67°C na entrada da tubulação para 26 °C nos primeiros 400 m, tal como é observado na Fig. 13. Como o trecho 2 está submerso no rio, a temperatura do óleo diminui ainda mais até se equilibrar com os 16°C da água externa ao longo de 203 m. No trecho 3, o óleo que troca calor com ar externo a uma temperatura de 26°C, entra em equilíbrio e mantém esta temperatura até a saída da tubulação em 3.600 m.

Considerando um incremento de pressão de 20% maior, do que o mínimo necessário, na descarga da tubulação para atender imprecisões nos resultados da simulação assim como flutuações operacionais, a condição de contorno na saída é de 3,6 kg/cm². O novo gradiente de pressão, com baixa transferência de calor é muito similar ao da Fig. 10; de forma similar, o perfil de temperatura ao longo do duto pouco foi alterado em relação à Fig. 11; portanto não são mostrados.

Tal como realizado nas análises anteriores, foi procurado também a resposta para troca de calor elevada. Novamente o comportamento da pressão e temperatura é similar ao descrito pelas Figs. 12 e 13.

6. CONSIDERAÇÕES FINAIS

A influência da temperatura no escoamento é bastante acentuada, uma vez que altas perdas de calor podem proporcionar grandes dificuldades ao fluxo através da tubulação, principalmente ao se tratar de óleos pesados. O aparecimento de parafinas, hidratos e/ou asfaltenos são exemplos de problemas causados por este desequilíbrio termal, o que requer maior incremento de pressão para escoar o fluido devido à elevada perda de carga gerado no sistema

A metodologia utilizada para analisar a influência de diferentes parâmetros operacionais, mostrou-se eficiente e satisfatória. Verificou-se a necessidade de utilização de uma bomba, selecionada adequadamente, para impulsionar os fluidos até o local de entrega, atendendo imprecisões nos resultados da simulação assim como flutuações operacionais que eventualmente podem ocorrer. A utilização de isolamento quando adequadamente projetado, em termos de espessura e qualidade do material, é de extrema importância para manter a troca de calor em níveis baixos, de tal forma a garantir a movimentação dos fluidos em trechos longos sem comprometer o funcionamento do sistema.

Um refinamento deste trabalho implica em estudar o início do crescimento dos depósitos de parafina, o qual ocorre quando a temperatura do óleo torna-se igual ou menor do que a TIAC. Isso, entretanto, requer a utilização de outros *softwares* comerciais, tais com o Olga[®], ou o desenvolvimento de *softwares inhouse* específicos.

AGRADECIMENTOS

Os autores agradecem à Schlumberger pela concessão da licença acadêmica do *software* Pipesim[®]. Professor Oldrich Joel Romero agradece à FAPES – Fundação de Amparo à Pesquisa do Espírito Santo, pelo suporte financeiro concedido mediante processo 54.708.508/2011.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Romero, O.J., Pereira, F.R., "Modelagem computacional da injeção de dióxido de carbono como método de recuperação de petróleo", *Estudos Tecnológicos (Online)*, **10**, 10-23 (2014)
- [2] Romero, O.J., Hupp, A., "Subsea Electrical Submersible Pump Significance in Petroleum Offshore Production", *Journal of Energy Resources Technology*, 136, 012902 (2014)
- [3] Romero, O.J., Almeida, P., "Numerical simulation of the sucker-rod pumping system", *Ingenieria e Investi*gacion, **34**, 4-11 (2014)
- [4] Romero, O.J., Alves, E.F.S., "Desempenho de um sistema offshore de petróleo com separador trifásico no leito marinho", *Petro & Química*, **358**, 44-49 (2014)
- [5] Hagedron, A.R., Brown, K.E., "Experimental study of pressure gradients occurring during continuous twophase flow in small-diameter vertical conduits", *J. Pet. Tech.* 475-484 (1965)
- [6] Duns, H., Ros, N.C.J., "Vertical flow of gas and liquid mixtures in wells", 6th. World Pet. Congress 452 (1963)
- [7] Beggs, H.D., Brill, J.P., "A Study of Two Phase Flow in Inclined Pipes", J. Pet. Tech. 607-617 (May 1973)
- Oliemans, R.V.A., "Two-phase flow in gas-transmission pipeline", ASME paper 76-Pet-25, presented at Pet. Div. ASME meeting Mexico City (1976)
- [9] Ramírez-Vázquez, J.A., Hernández-Guerrero, A., Hernández-González, S.M., Romero-Méndez, R., Lesso-Arroyo, R., "Canales ondulantes, estúdio del efecto de la velocidad versus transferencia de calor y caída de presión", *Revista Iberoamericana de Ingeniería Mecánica*, 9(2), 13-19 (2005)
- [10] Valle, R.M., Moreira, G.A.A., Nascimento, A.M., "Análise do potencial eólico de uma microrregião utilizando um modelo de camada limite atmosférica", *Revista Iberoamericana de Ingeniería Mecánica*, 17(2), 59-71 (2013)
- [11] Baritto, M., Bracamonte, J., "Ecuación aproximada para la generación de entropia em colectores solares planos no isotérmicos para calentamiento de aire", *Revista Iberoamericana de Ingeniería Mecánica*, 17(2), 149-162 (2013)
- [12] Taitel, Y., Dukler, A.E., "A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow", AIChE Journal, 22(1), 47-55 (1976)
- [13] Hossain, M.S., Sarica, C., Zhang, H.Q., "Assessment and development of heavy-oil viscosity correlations", SPE/PS-CIM/CHOA 97907, PS2005-407 (1976)
- [14] Pipesim, "Fundamentals Training and Exercise Guide" version 2011.1, Schlumberger (2011)
- [15] Kaminsky, R.D., "Estimation of two-phase flow heat transfer in pipes", Journal of Energy Resources Technology, 121(2), 75-80 (1999)

OIL-WATER TWO-PHASE FLOW IN ONSHORE PIPELINES

Abstract – Computational tools for simulation of multiphasic flow in oil pipelines are of great importance for the determination of the economic feasibility of the production in oilfields. The present article presents the mathematical and numerical modeling of the oil biphasic flow in a partially submerged onshore pipeline. The biphasic behavior of the heavy oil of 13,2 °API is translated by the Dukler correlation. The oil's viscosity is regarded as dependent on the temperature and on the API density of the oil by means of the Hossain correlation. The pipeline transports the oil from a collecting station to a storage center and consists of three sections. The first and third sections are above ground and are in contact with the external environment. The intermediate section is sitting on the bed of a river and is the critical part of the pipeline, once high heat losses are observed. The influence on the type of pipe insulation in the pressure and temperature gradients was analyzed with the aid of commercial software Pipesim®. The results show that the use of isolation when appropriately designed in terms of material quality and thickness is of utmost importance to maintain the heat transfer at low levels, to ensure the movement of fluids in long sections without compromising the system operation.

Keywords - Heat exchange, Oil pipeline, Two-phase flow, Pressure drop, Pipesim.