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Resumen — En las recientes décadas se publican investigaciones sobre simulaciones dseas en las que se utiliza
el método de los elementos finitos para estimar las propiedades mecanicas o el comportamiento del tejido ante
determinadas cargas. En todas estas investigaciones es esencial conocer con la mayor exactitud posible el com-
portamiento mecédnico de este material bioldgico. En esta investigacion se analizo la convergencia de los resul-
tados numéricos obtenidos de las simulaciones de estructuras 6seas digitales mediante el método de los elemen-
tos finitos, con el fin de proporcionar una metodologia eficiente. Se construyeron probetas de tejido cortical bo-
vino, a las cuales se les practicaron tomografias computarizadas para la generacion de la geometria y la asigna-
cion de propiedades mecanicas. Se desarrollaron simulaciones variando el tamafio de la malla con el fin de des-
cribir la convergencia por esfuerzo, carga y energia de deformacion versus niimero de elementos. La conver-
gencia de las simulaciones a traccion se comporta independiente de las propiedades asignadas como material
isotropico u ortotropico. Las simulaciones a compresion de estructuras completas con canal medular y el uso de
elementos hexaédricos en muestras cubicas, redujo significativamente el nimero de elementos necesarios para
lograr la convergencia en comparacion con el empleo de estructuras completas sin canal medular y el empleo de
elementos tetraédricos en muestras cubicas, respectivamente. La convergencia de los diferentes modelos 6seos
es mas lenta por esfuerzo y energia de deformacion versus numero de elementos. Se sugiere una metodologia
eficiente para la simulacion de estructuras 6seas computacionales mediante el método de los elementos finitos
para la obtencion de resultados confiables.
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1. INTRODUCCION

Debido a la naturaleza propia, a la adaptabilidad de la anatomia y a la morfologia del tejido, las estruc-
turas dseas obedecen en el tiempo a los estimulos producidos por las cargas externas, haciendo de esta
forma que sus propiedades mecanicas no sean homogéneas [1]. En 1892, Wolff [2] fue el pionero en ob-
servar y explicar el proceso de adaptabilidad y remodelado que tiene lugar en huesos sanos luego de la
ocurrencia de cambios o dafios patologicos. Varias décadas mas tarde, se estudio el comportamiento a
postfluencia y fractura de huesos y se propuso un método para visualizar las diferencias fisicas entre las
regiones sometidas a tension y a compresion [3]. Luego se utilizaron secciones delgadas de hueso cortical
diafisario de fémur bovino y humano para describir las propiedades en un modelo transversalmente iso-
tropico [4].

En 1977, se propone una relacion potencial entre la densidad aparente y las propiedades mecanicas en
especimenes de hueso trabecular bovino y humano [5]. En ese trabajo, se sostiene que las propiedades a
nivel microscopico de los tejidos trabeculares y corticales son estructuralmente similares, difiriendo solo
en el grado de porosidad. De acuerdo a las observaciones, se estima que el modulo elastico a compresion
para tejido dseo E es aproximadamente proporcional a la velocidad de deformacion € y al cubo de la den-
sidad aparente del hueso p, de la forma:
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E = E£00 (L) (1)
Pc

donde E, es el médulo elasticos a compresion del tejido compacto a una rapidez de deformacion de 15y

pces la densidad del tejido cortical.

Mas tarde las propiedades elasticas ortotropicas en muestras ctbicas de tejido cortical de fémures hu-
manos y caninos se determinaron con ultrasonido [6]. Se establecen expresiones donde la relacion entre
las propiedades elasticas y la densidad es distinta para el hueso trabecular y el cortical [7]. Luego se des-
cribe el comportamiento mecanico anisotrdpico de la region metafisaria [8], con un modulo elastico dife-
rente al diafisario, el cual es definido como un modelo isotropico transversal con constantes elasticas en
tension propuestas por [4]. En este estudio, se determin6 el mddulo eldstico para el hueso cortical y trabe-
cular en direccidn axial y transversal usando una densidad aparente como variable de control [8]. Un gran
numero de relaciones matematicas que determinan el modulo eléastico en funcion de la densidad han sido
propuestas por varios autores [9-23].

Otros estudios han determinado el comportamiento mecanico del tejido 6seo empleando técnicas de na-
noindentacion. Las propiedades mecanicas por la composicion asi como la organizacion a los niveles de
la micro-, meso- y macro-estructura se estimo mediante nanoindentacion por [24]. En esta investigacion
se concluyo que la nanoestructura del tejido 6seo difiere sustancialmente entre los sitios anatomicos y los
individuos. Se sugiere que la heterogeneidad del hueso es de importancia en la fragilidad, el proceso de
adaptacion y remodelado 6seo. Igualmente otros investigadores mediante nanoindentacion determinaron
las constantes elasticas anisotropicas de la matriz extracelular dsea bovina validadas con ensayos mecani-
cos de traccion. Los resultados arrojaron diferencias entre el 2% y el 13% [25]. También se ha investiga-
do la influencia de cargas ciclicas en tejido cortical in vitro. En la investigacion de [26] realizaron ensa-
yos de fatiga en tejido dseo cortical bajo cargas axiales, torsionales y combinadas (axial-torsional). En
este estudio se demostrd que la superposicion de torsion y carga axial reduce significativamente la vida a
la fatiga del hueso cortical.

Las pruebas mecanicas son técnicas mas directas para evaluar las propiedades mecanicas del hueso al
igual que otros materiales. Sin embargo, realizar ensayos mecanicos al tejido 6seo es complejo por las
limitaciones que representa la obtencidn, conservacion, construccion de probetas y la aplicacion de prue-
bas mecanicas a condiciones fisioldgicas normales. Ante esta situacion, la simulacion numérica ofrece
una alternativa que permite explorar y generar nuevo conocimiento para entender el comportamiento
biomecanico de un material biolégico como uno estructural complejo que en general no puede ser estu-
diado de forma analitica.

La construccion de modelos 6seos mediante el método de los elementos finitos (MEF) se introdujo por
primera vez en la literatura ortopédica en 1972 [27], unos quince afios después de ser iniciada esta técnica
de analisis de esfuerzos en ingenieria mecanica. Desde entonces numerosas publicaciones muestran ha-
llazgos significativos y conceptos ttiles generados por este método en el estudio del comportamiento
mecanico del tejido oseo, las cuales han servido para ilustrar sus capacidades y limitaciones.

Progresos en las mediciones de la densidad 6sea han permitido determinar la relacion que existe entre
las densidades aparentes del hueso, la atenuacién de imagenes provenientes de tomografias axiales
computarizadas (TAC) y las propiedades mecanicas del tejido mediante el MEF [28-33]. Zannoni ef al.
[28] desarrollaron un algoritmo para la generacion de mallas por el MEF y la adquisicion de propiedades
mecanicas a partir de TAC siguiendo las relaciones propuestas por [S]. Wirtz et al. [29] mediante el MEF
estudiaron el comportamiento mecanico de un fémur humano con las correlaciones de las densidades
aparentes longitudinales y transversales de tejidos cortical y trabecular propuestas por [8]. Taylor et al.
[30] determinaron las constantes elasticas ortotropicas de un fémur humano completo fresco mediante un
modelo de elementos finitos basado en la informacion obtenida de TAC y analisis modales. Las constan-
tes elasticas fueron comparadas con las experimentales utilizando técnicas de ultrasonido. Buroni et al.
[31] cuantificaron las distribuciones de esfuerzos y deformaciones alrededor de implantes 6seos. Deter-
minan las constantes elasticas anisotropas del tejido 6seo utilizando imagenes de TAC y el MEF. Perillo-
Marcone et al. [32] simularon el comportamiento mecanico de una tibia humana con las correlaciones
para densidades aparentes propuestas por [5] y [10] mediante TAC y el MEF. Helgason et al. [33] compa-
ran los resultados obtenidos mediante simulaciones numéricas sobre el comportamiento mecanico de un



N. Gomez-Ruiz et al./ Revista Iberoamericana de Ingenieria Mecanica 21(2), 85-103 (2017) 87

fémur humano con los obtenidos mediante mediciones experimentales empleando dos aproximaciones
distintas para la asignacion de las propiedades mecéanicas. Una de las aproximaciones consistio en la asig-
nacion del modulo elastico a los elementos finitos de acuerdo a la informacion obtenida de TAC y ecua-
ciones empiricas a partir de la densidad aparente. Mientras que la otra estrategia radico en la asignacion
de propiedades mecénicas constantes. Los resultados indicaron que la asignacion de propiedades hetero-
géneas presenta menos desviaciones con respecto a datos experimentales.

Varios investigadores han estudiado el efecto del tamafio de los elementos por el MEF sobre los resul-
tados numéricos. Keyak y Skinner [34] analizaron tres modelos de fémur proximal humano, cada uno con
un tamafio de elemento hexaédrico diferente. Los resultados indicaron que los elementos hexaédricos
deben ser muy pequefios para representar las fuertes variaciones en las propiedades mecanicas que existen
en el hueso y que el incremento del tamafio de los elementos disminuye los esfuerzos y deformaciones.
Ellos afirman que la convergencia de la energia de deformacién no asegura que una malla particular sea
adecuada para producir resultados exactos de esfuerzo o deformacion. Niebu et al. [35] a partir de mues-
tras vertebrales humanas y dos huesos trabeculares provenientes de tibia bovina analizados por el MEF,
concluyeron que la convergencia de los resultados dependia tanto del modo de carga (axial/corte) como
de la fraccion volumétrica de la muestra. [gualmente, Ayturk y Puttlitz [36] analizaron un modelo de vér-
tebras lumbares humana por el MEF (L1-L5), verificaron la convergencia por energia de deformacion. El
modelo convergido fue validado en base al rango de movimiento, la presion intradiscal, el esfuerzo dsea
cortical anterolateral y las deformaciones de ligamento longitudinal anterior. Anitha et al. [37] evaluaron
el efecto de la exposicion de la dosis de rayos X (80, 150, 220 y 500) mAs sobre la carga de fractura en
vertebras humanas. La asignacion del méodulo elastico se llevo a cabo por medio de expresiones matema-
ticas propuestas en la literatura en funcion de la densidad, la cual se estimo a partir de imagenes de TAC.
En este estudio se llevo a cabo un analisis de convergencia de la carga de fractura versus numero de ele-
mentos. La convergencia se logré con elementos de Smm de arista. Los valores de carga de fractura pro-
nosticados por el MEF no se vieron afectados por la exposicion de 500 a 80 mAs, sin diferencias signifi-
cativas. Sugiura et al. [38] investigaron los desplazamientos relativos por el MEF en el hueso cortical
implantado en la mandibula y la distribucidon de esfuerzo bajo cargas. Se realizé una prueba de conver-
gencia de los modelos para verificar la calidad de la malla, el criterio de convergencia se fij6 en menos
del 1% en los cambios de energia de deformacion. Con base en los resultados de la prueba de convergen-
cia, se fijo un tamafio de arista de los elementos de 0.6 mm.

Los estudios descritos sobre simulaciones 6seas muestran procedimientos para desarrollar modelos
oseos utilizando el MEF. Sin embargo, estos modelos son sensibles a variables como por ejemplo la geo-
metria, la discretizacion del volumen, las propiedades del material, las condiciones de borde y el tipo de
elemento, como lo sugiere [39]. En estas investigaciones es esencial conocer con la mayor exactitud posi-
ble los resultados numéricos. Por lo tanto, la presente investigacion tiene como objetivo analizar la con-
vergencia en modelos de tejido dseo cortical bovino altamente heterogéneos simulados a traccion (con
propiedades isotropicas y ortotropicas) y compresion (con propiedades ortotropicas) uniaxial mediante el
MEF, con el propdsito de determinar una metodologia eficiente para la obtencion de resultados confia-
bles. La convergencia se analiza por carga, energia de deformacion y esfuerzo versus numero de elemen-
tos. La asignacion de las propiedades mecanicas a los modelos 0seos se desarrolla mediante la lectura
densidades aparentes leidas de las TAC en diferentes puntos de Gauss por elemento. Los modelos dseos
de probetas ensayadas a traccion y compresion de estructuras largas, son comparados con datos experi-
mentales como unico medio para validar los resultados numéricos.

2. MATERIALES Y METODOS

La metodologia empleada es resumida en las siguientes etapas: fabricacion y conservacion de los espe-
cimenes, estimacion de las densidades a partir de imagenes tomograficas, ensayos mecanicos, simulacio-
nes numéricas, criterio de convergencia y validacion de los modelos.
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2.1. Fabricacion y conservacion de los especimenes

Todas las muestras empleadas en el presente trabajo corresponden a animales bovinos de los cuales se
desconocen las caracteristicas de raza, edad, alimentacion y sexo.
2.1.1. Especimenes para los ensayos a traccion

A partir de dos muestras distintas de fémures frescos se construyeron igual niimero de probetas para en-
sayos mecanicos a traccion, como la mostrada en la Fig 1. Las dimensiones de la geometria de las probe-
tas se estandarizan de acuerdo a lo establecido por la ASTM, donde D/d = 2, la longitud de la region de
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Fig. 1. Dimensiones en milimetros de la geometria de la probeta de traccion.
a=104, b=34, c= 26, D=12, d=6, e= 4, L=25, r=15.

Fig. 2. Proceso de mecanizado de las probetas de traccion donde se muestra (a) hidratacion durante el mecanizado, (b) con-
torno final de la probeta, (c) generacion de espesor y (d) geometria final.
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medicion es L =~ 3d y la longitud de agarre ¢ = %a, siendo a la longitud total del espécimen. Todos los
especimenes fueron extraidos haciendo coincidir su longitud mayor con la direccion longitudinal de las
muestras femorales. De igual forma, siguiendo [40] y [41], una vez cortadas las muestras, estas fueron
hidratadas en solucion isotonica, envueltas en gasa y plastico hermético y refrigeradas a -20°C.

Para la fabricacion de las probetas se empled una fresadora a control numérico marca Chevalier, mode-
lo QP1620-L. Como se muestra en la Fig. 2(a), para la sujecion de las muestras en la prensa se eliminaron
las epifisis obteniéndose asi una longitud diafisaria femoral de aproximadamente 150 mm. Las velocida-
des de avance y de rotacion de la herramienta de corte se fijaron en 1000 mm/min y 300 rev/min, respec-
tivamente.

Para evitar la deshidratacion debido al calor generado durante el corte, las probetas fueron hidratadas
utilizando una solucion isotonica de cloruro de sodio al 0.9%. El paso en la profundidad de desbaste se
establecid en 2 mm hasta la extraccion de la probeta. En la Fig. 2(b) se observa la obtencion del contorno
completo de la probeta. En la Fig. 2(c) se puede apreciar el proceso de mecanizado que tiene como obje-
tivo conseguir las superficies planas de las probetas. El avance y rotacion de la herramienta de corte se
fij6 en 700 mm/min y 300 rev/min, respectivamente. La geometria final de la probeta fabricada se mues-
tra en la Fig. 2(d).

2.1.2. Especimenes para ensayos a compresion

De dos radios se generaron dos probetas consistentes en estructuras completas para ser ensayadas a
compresion, como se ilustra en la Fig. 3. En los especimenes se procura que las epifisis estén planas y
paralelas a fin de evitar movimientos laterales durante el ensayo [40]. La creacion de caras paralelas en
este tipo de probetas se logro con una sierra de cinta rotando a una velocidad 300 rev/min. Siguiendo el
proceso arriba descrito, las muestras fueron hidratadas durante el proceso de corte. La Fig. 3 también
muestra de forma esquematica un hueso largo con el canal medular, donde a diferencia del tejido 6seo, el
material organico contenido en la cavidad medular presenta propiedades mecanicas bajas.

Extremo proximal
“ ’

Canal medular

240 mm

.

~—— Extremo distal

Fig. 3. Geometria de la probeta de compresion.



90 N. Goémez-Ruiz et al./ Revista Iberoamericana de Ingenieria Mecdnica 21(2), 85-103 (2017)

2.2. Estimacion de las densidades a partir de imagenes tomograficas

En este estudio se obtuvieron imagenes de tomografias axiales computarizadas (TAC) de las probetas a
ser ensayadas a traccion y a compresion. Para ello, se emple6 un tomografo Siemens Somaton Spirit mo-
delo SyngoC.T.2007P. Las imagenes obtenidas fueron almacenadas digitalmente en formato DICOM de
512x512 pixeles con un voxel de 1.17x1.17x1.00 mm”>. Al igual que en [30] y en [42], se supone una
relacion lineal entre las densidades del tejido y las lecturas en UH. De este modo, la densidad del hueso
compacto fue estimada como 1.8 g/cm’; mientras que la densidad del aire se aproximé a partir de las con-
diciones de presion y temperatura en la sala para el dia y la hora de las lecturas. Asi, las correspondientes
densidades tedricas de aire toman los valores de 0.969x10°y 1.085x107 g/cm’ para las muestras de trac-
cion y de compresion, respectivamente.

La densidad del hueso compacto se correlacion6 a los valores maximos de UH leidos de las imagenes
de TAC; es decir, 2420 y 1610 UH para las probetas de traccion y de compresion, respectivamente; mien-
tras que las densidades del aire se correlacionaron al valor de -1000 UH. A partir de las relaciones esta-
blecidas, las densidades aparentes en funcion de las UH para las probetas de traccion y de compresion son
respectivamente

plg/cm3] = 5.26 x 107*UH + 0.53 (2a)
plg/cm3] = 6.85 x 107*UH + 0.69 (2b)

2.3. [Ensayos mecanicos

Las pruebas se realizaron en una maquina de ensayos mecanicos marca MTS. Las velocidades de des-
plazamiento del piston se fijaron en 0.005 y 0.0833 mm/s para los ensayos de traccion y de compresion,
respectivamente. Las distintas muestras fueron hidratadas con solucion isotonica de cloruro de sodio du-
rante las pruebas mecanicas.

2.4. Simulaciones numéricas

La simulacion numérica de volimenes computacionales de hueso cortical es presentada en las si-
guientes fases: construccion de voliumenes computacionales, discretizacion de los modelos, discretizacion
y asignacion de los campos de propiedades fisicas y mecanicas, condiciones de frontera y criterio de con-
vergencia.

2.4.1 Construccion de volimenes computacionales

La reconstruccion digital de los volumenes de las probetas de traccion y de compresion se realizo a par-
tir de imagenes tomograficas empleando una técnica de segmentacion manual. Para ello, se describieron
las imagenes secuenciales de las TAC usando el programa Surfdriver”®, el cual representa los volimenes
como un conjunto de puntos y lineas. Para las probetas de compresion se obtienen dos modelos; un pri-
mer modelo que se define segmentando solo el contorno externo del hueso y un segundo modelo que
reconstruye tanto la superficie externa del hueso como la superficie correspondiente al canal medular.
Para identificar cada modelo, estos son asi denominados como estructura completa sin canal medular y
estructura completa con canal medular. El objetivo de modelar las estructuras con y sin canal es el de
estudiar la influencia de la médula 6sea en la rapidez de convergencia de la solucion, asi como, la desvia-
cion de los resultados numéricos respecto a los obtenidos experimentalmente.

En un programa de elementos finitos como [43] se recrean las superficies que se adaptan a los contornos
obtenidos, describiendo asi los volumenes de las probetas como superficies cerradas a partir de las cuales se
pueden definir univocamente los dominios a considerar en las simulaciones numéricas. Los modelos so6lidos
obtenidos a partir de las tomografias de las probetas de traccion y compresion se representan en la Fig. 4.
En la Fig. 4(a) se tiene una representacion tridimensional de la probeta de traccion. En las Figs. 4(b) y
4(c) se muestran para cada caso dos vistas de las estructuras completas para las simulaciones a compre-
sion sin y con canal medular.
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Fig. 4. Modelos numéricos de los voliimenes de los especimenes de (a) traccion, compresion (b) sin y (c¢) con canal medular

Empleando la metodologia descrita anteriormente se generaron volumenes cubicos. La segmentacion se
realizo a partir de imagenes de TAC practicada a la diafisis femoral de una de las muestras 6seas, con el
fin de estudiar la convergencia de estos modelos simulados a compresion en distintas direcciones.

2.4.2. Discretizacion de los modelos

Para el modelado discreto de los volimenes de las probetas numéricas se emplearon mallas no estructu-
ras generadas automaticamente considerando elementos tetraédricos de 10 nodos.

A fin de realizar un analisis de convergencia, es necesario estimar los errores de las aproximaciones de
los campos de interés; es decir, esfuerzos, deformaciones y energia de deformacion, y refinar adaptativa-
mente el mallado de los volumenes. Para cada refinamiento se defini6 el tamafio de la arista de los ele-
mentos, como se muestra en las tablas 1, 2 y 3. Especificamente, en las tablas 1 y 2 se puede observar el
numero resultante de elementos tetraédricos cuadraticos para las probetas de traccion y de compresion.

Tabla 1. Numero de elementos tetraédricos en los modelos de probetas de traccion.

Tamaiio del

Elemento [mm] Probeta 1 Probeta 2
4.00 266 270
3.50 372 352
3.00 444 419
2.50 732 739
2.00 1406 1141
1.50 3158 3188
1.00 10582 9931
0.90 14070 14791
0.80 22748 19528
0.70 32063 29729
0.60 51355 48640

0.50 87644 82932
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Tabla 2. Numero de elementos tetraédricos en modelos de probetas de compresion.

Tamaiio del Numero de elementos
elemento Probeta 1 Probeta 2
[mm] sin canal con canal sin canal con canal
6.40 8725 5249 7183 4678
5.10 14699 11977 11044 11616
4.70 18924 17410 13619 13324
4.10 28469 22776 21172 19292
3.10 64234 50652 46314 40985
2.80 87945 67868 62941 56645
2.50 120664 92869 90109 80891
2.35 147377 111604 108677 95738
2.20 183409 138861 135375 116212
2.10 208064 156398 153742 131158
2.00 239998 181300 175636 147663

Tabla 3. Tamafio y nimero de elementos tetraédricos y hexaédricos en los especimenes cubicos simulados a compresion.

Elementos tetraédricos Elementos hexaédricos

Tamaiio Numero Tamaiio Numero
3.00 100 4.00 1
1.50 239 2.00 8
1.00 561 1.50 27
0.90 814 0.90 125
0.70 1515 0.70 216
0.40 7369 0.40 1000
0.30 21503 0.30 2744
0.25 33225 0.20 8000
0.23 46443 0.16 15625
0.22 54234 0.12 39304
0.20 64278 0.10 64000

De forma similar, en la tabla 3 se presenta el nimero de elementos para las probetas cibicas a compre-
sidn; sin embargo, en este caso en las simulaciones se emplearon elementos tetraédricos cuadraticos y
hexaédricos lineales; esto con el objetivo de analizar las diferencias en la rapidez de convergencia con
diferentes elementos y puntos de Gauss.

2.4.3. Discretizacion y asignacion de los campos de propiedades fisicas y mecanicas

En las siguientes dos secciones se explica el método de discretizacion y asignacion de los valores loca-
les promedios de los campos originales de la densidad como propiedad fisica y del mddulo elastico como
propiedad mecanica. En este sentido, estas variables fueron expresadas como integrales ponderadas sobre
el volumen de los elementos empleados.

2.4.3.1. Aproximacion del campo de densidades

Una simplificacion de uso practico consiste en la descripcion del campo de densidades del tejido como
un valor tnico definido en las correspondientes coordenadas centroidales de los volumenes discretos [44].
Este procedimiento se realizd con un programa desarrollado por [45], en el cual se leen las UH de las
imagenes tomograficas y se calcula la densidad aparente empleando las expresiones descritas en la ecua-
cion (2). Para estimar el valor centroidal de la densidad p, se emplea el método de cuadratura de Gauss
para integrar la expresion

pe = [ pav /v, 3)
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Fig. 5. Campos discretos de densidades en los especimenes (a) de traccion, (b) de compresion sin y con canal medular y (c)
cubico de compresion.

donde p representa la densidad en los puntos de Gauss y V, el volumen del elemento. Para las distintas
simulaciones, los valores centroidales de densidad fueron calculados considerando 1, 4 y 5 puntos para
los modelos discretizados usando elementos tetraédricos y 1, 8 y 27 puntos para los modelos con elemen-
tos hexaédricos.

La Fig. 5 ilustra los campos discretos de densidades para los tres modelos de probetas digitales. Especi-
ficamente, en la Fig. 5(a) se muestra la distribuciéon de densidad donde se aprecia un valor maximo
2.34 g/cm?® para este tejido cortical; este valor esta en correspondencia con los valores promedios en la
region diafisiaria de donde proviene la probeta. En la Fig. 5(b) se puede apreciar valores mas elevados de
densidad a nivel de la didfisis (= 1.99 g/cm?), esto por estar en esa zona el tejido mas compacto. Ahora,
en la region lateral derecha de la probeta se observa la menor densidad (pgire = 1.0 X 107* g/cm?), esto
por no estar el cubito alojado. En la estructura sin canal medular de la Fig. 5(b), el espacio ocupado por la
médula 6sea posee densidades que varian en el rango de 0.662 < psguie < 0.883 g/cm3; valores que
se corresponden a los esperados para este material organico. La Fig. 5(c) presenta una distribucion de
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densidad en el rango 1.609 < peorticar < 2.314g/cm3 del modelo cubico extraido digitalmente de la
diafisis femoral de una de las muestras Oseas.

2.4.3.2. Aproximacion del campo del mddulo elastico

Al igual que para el campo de densidades, el mddulo elastico puede ser aproximado a nivel de cada
elemento por su correspondiente valor centroidal. Para definir estos valores centroidales, se postula que
los modulos elasticos siguen la expresion propuesta por [5], como se detalla en la ecuacion (1). El uso de
esta expresion requiere la estimacion de la densidad de la matriz mineral del hueso cortical (p.), el médu-
lo elastico a compresion (E,) y la rapidez de deformacion (€). De esta forma, para el valor de la densidad
de la matriz, se considera que esta tiene un valor aproximado de p, = 1.8 g/cm? [5]. En los modelos, el
valor del mddulo elastico a compresion se ajusta a los siguientes valores; para las probetas de traccion
E. = 9.9 GPa [46], para las probetas de compresion Ec = 26.6 GPa [26] y para las probetas cubicas se
considera la funcidon potencial propuesta por [47]; ajustada de acuerdo a [48] y [49], donde E,. en GPa
viene expresado en términos de la velocidad de deformacion de la forma:

E, = 11.69£0-01798 “4)

La velocidad de deformacion € empleada se obtiene de la relacion entre la velocidad de desplazamiento
del piston (0.005 y 0.0833 mm/s en las probetas de traccion y de compresion, respectivamente) y las co-
rrespondientes longitudes iniciales (52 y 240 mm, respectivamente). De esta forma se obtiene para cada
modelo una rapidez de deformacién de 96.2x107° y 347.2x1076s~1. En los modelos cubicos, la veloci-
dad de deformacion es establecida como £ = 1250x10~6s~ 1, Sustituyendo las estimaciones de p., E. y &
segun los valores arriba descritos y bajo la hipotesis de isotropia, se pueden aproximar los valores del
modulo elastico en GPa en los modelos de probetas de traccion, de compresion y cubicas de compresion
como una funcion de la densidad, donde

Etraccion = 975 X 10%p? (52)
Ecompresién = 2875 X 103p3 (5b)
E upica = 1190 X 103/)3 (5¢)

Ahora, modelando el tejido cortical como ortotropico, se supone que las propiedades elasticas; es decir,
modulo de elasticidad, siguen las relaciones propuestas por [50]. De esta forma,

GlZ = 024E3, Gl3 = 029E3, 623 = 032E3 (6b)
Vi = 10, Vi3 = 0.54V12; Vo3 = 0.81V12 (60)

donde los subindices 1, 2 y 3 representan las direcciones transversal radial, transversal tangencial y longi-
tudinal, respectivamente. En el modelo, el modulo elastico en la direccion longitudinal se aproxima de
acuerdo al modelo isotropico previamente descrito y el coeficiente de Poisson se establecio en vy, = 0.302
de acuerdo a [50] para hueso cortical bovino.

2.4.4. Condiciones de frontera

Para el modelado numérico del comportamiento eléstico lineal de las distintas probetas se postulan las
correspondientes condiciones de desplazamiento en superficies especificas de los volimenes. Para el caso
de las probetas de traccion, se imponen desplazamientos en los nodos de los planos transversales /2 don-
de inician las regiones de agarre de las mordazas de la maquina de ensayo, como se muestra en la Fig. 6.
En el plano inferior se restringen los desplazamientos a lo largo de las direcciones transversal y longitudi-
nal; mientras que en el plano superior, se impone un desplazamiento positivo a lo largo de la direccion
longitudinal y se restringen a lo largo de las direcciones transversales.

Forma similar, para las probetas de compresion, los desplazamientos se restringen de forma tal que des-
criban la condicion de contacto entre el espécimen y las mordazas, como se ilustra en la Fig. 7. En el
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Fig. 7. Extremo proximal y distal en probeta de compresion.

plano inferior (extremo distal) se restringen todos los desplazamientos; mientras que en plano superior
(extremo proximal) se restringen los desplazamientos en el plano transversal y se impone un desplaza-
miento compresivo a lo largo de la direccion longitudinal. Para las probetas ctbicas de compresion, los
desplazamientos impuestos exhiben caracteristicas similares al caso anterior en planos opuestos.

2.5. Criterio de convergencia

En este estudio se generaron refinamientos de mallas de elementos finitos con el propdsito de realizar
un estudio de convergencia por carga, esfuerzo y energia de deformacion versus nimero de elementos
como lo sugiere [51]. El nimero de elementos presentes en cada modelo se muestran en las tablas 1,2y
3. La convergencia de los resultados numéricos se probd en el elemento donde se obtuvo el valor maximo
(criterio del valor maximo) por ser esta region la mas importante segun [52]. Para cada modelo (actual) se
calcularon las diferencias porcentuales de los resultados numéricos con respecto al modelo de referencia
(anterior) y se asumid que la malla estaba en convergencia si dicha diferencia porcentual era menor al
2.5%, la cual es inferior a la diferencia asumida por [53].

En el caso del analisis de sensibilidad por energia de deformacion versus nimero de elementos en los
modelos de probetas ensayadas a traccion y cubicos simulados a compresion, se considera que la conver-
gencia se logra cuando los resultados se estabilizan con el mismo orden de magnitud.
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2.6. Validacion de los modelos

En las simulaciones primero se obtiene un modelo conceptual a partir de informacién del objeto real,
que posteriormente es transferida a un modelo matematico. Mediante el empleo de un método adecuado,
como el MEF, se puede resolver un modelo matematico complejo. Tomando ciertas suposiciones, el mo-
delo creado es solo una version simplificada del objeto real [54]. Por lo tanto, la validacion es un proceso
donde se demuestra que los resultados numéricos son lo suficientemente exactos para reproducir o prede-
cir un fenomeno fisico [55].

En esta investigacion se validan los modelos al estimar el error porcentual de los valores numéricas ob-
tenidas por el método de los elementos finitos con respecto a datos experimentales [55], de esta manera se
comprueba si las simulaciones de las muestras d6seas reproducen el comportamiento mecanico de este
material bioldgico. La validacion de los diferentes modelos se realiza comparando el valor de la carga
obtenida con la malla en la cual los valores convergen con la carga (probeta 1 a traccion: 104.41 kgf, pro-
beta 2 a traccion: 77.88 kgf, estructura 1 a compresion: 4765.72 kgf, estructura 2 a compresion: 4564.62
kgf) para el maximo desplazamiento de la region lineal obtenida experimentalmente (probeta 1 a traccion:
0.1867 mm, probeta 2 a traccion: 0.1415 mm, estructura 1 a compresion: 1.726 mm, estructura 2 a com-
presion: 1.715 mm).

3. RESULTADOS

La Fig. 8 presenta las curvas experimentales de carga-desplazamiento para dos condiciones de carga en
probetas distintas. En el primer caso, la Fig. 8(a) describe el comportamiento exhibido por dos probetas
de traccion hasta la fractura. Igualmente, la Fig. 8(b) muestra el comportamiento real de dos probetas de
estructuras completas sometidas a compresion. En ambas graficas se aprecia una relacion carga-
desplazamiento inicialmente lineal. En el caso de las probetas sometidas a traccion, el comportamiento
continda con una ligera no linealidad para luego seguir con el aumento de la capacidad de carga hasta la
fractura. Las estructuras sometidas a compresion, posterior a la zona elastica lineal, muestran un compor-
tamiento no lineal hasta la falla. Como se puede observar de la comparacion de las curvas de la Fig. 8, el
tejido cortical en direccion longitudinal exhibe mayor capacidad de carga a compresion.

La Fig. 9 presenta las curvas de convergencia por carga, energia de deformacion y esfuerzo para las
probetas simuladas en traccion. En los modelos numéricos se emplearon elementos tetraédricos y las va-
riables de interés fueron integradas empleando 1, 4 y 5 puntos de Gauss. Para el analisis, las propiedades
elasticas del material fueron supuestas, en una primera aproximacion, como isotropica de acuerdo a la
ecuacion (5a), y luego, como ortotropica empleando las expresiones de las ecuaciones (5a) y (6). De los
resultados se puede observar que para diferentes puntos de Gauss e igual densidad de malla, no existen
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Fig. 8. Curvas experimentales carga-desplazamiento para las probetas (a) de traccion y (b) de compresion.
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Fig. 9. Estudio de convergencia para dos probetas de traccion considerando propiedades elésticas isotropicas y ortotropicas
con 1,4y 5 puntos de Gauss por elemento.

Tabla 4. Error porcentual por carga en probetas simuladas a traccion.

Error porcentual

Material isotropico  Material ortotrépico P £ De
Puntos de Gauss 1 4 5 1 4 5
Probeta 1 11.12 10.81 1095 11.05 10.70 10.84 10.91+0.16
Probeta 2 495 254 245 125 224 217 2.6+ 1.24

P: Promedio. De: Desviacion estandar

diferencias significativas entre una misma muestra simulada como material isotrépico o como uno or-
totropico.

En la tabla 4 se exhiben diferencias despreciables de error porcentual por carga entre los modelos de
una misma muestra (Probeta 1: 10.91+0.16, Probeta 2: 2.6+1.24), siendo el error de los modelos con 1
punto de Gauss ligeramente diferente en comparacion con los estimados con 4 y 5 puntos de Gauss. El
comportamiento similar de los modelos dseos como material isotropico y ortotropico se puede atribuir a
que las propiedades mecanicas asignadas en direccion longitudinal son iguales como material isotropico y
ortotropico, aunado a que el desplazamiento impuesto a los diferentes modelos es estrictamente en direc-
cion longitudinal. Los resultados obtenidos mediante el uso de diferentes puntos de Gauss por elemento
tetraédrico no presentan variaciones importantes, esto se puede explicar por la baja dispersion de los valo-
res de densidades en la region de prueba de estas probetas, como se observa en la Fig. 5(a), permitiendo
que el calculo del médulo elastico incorporado en el centro de gravedad de cada elemento sean indepen-
dientes del niimero de puntos de Gauss empleados, por ser muy similar el promedio del médulo elastico
con 4 o 5 puntos de Gauss, y con ligera diferencia con el calculado con 1 punto de Gauss.

La Fig. 10 presenta las curvas de convergencias por carga, energia de deformaciéon y esfuerzo contra
nimero de elementos tetraédricos, con el uso de 1, 4 y 5 puntos de Gauss, de modelos de estructuras
completas sin/con canal medular ensayadas a compresion, simulados como material ortotropico emplean-
do las expresiones de las ecuaciones (5b) y (6). Estas graficas muestran diferencias de resultados des-
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Fig. 10. Estudio de convergencia para estructuras completas sin y con canal medular considerando propiedades elasticas
ortotropicas con 1, 4 y 5 puntos de Gauss por elemento.

Tabla 5. Error porcentual por carga en probetas de estructuras completas simuladas a compresion.

Error porcentual

Modelo sin canal medular Modelo con canal medular
Puntos de Gauss 1 4 5 1 4 5 P £ De
Estructura 1 10.97 3.94 3.90 2.49 3.74 3.72 4.79+3.07
Estructura 2 1.32 9.40 9.46 2.69 11.54 11.60 7.67+4.51

P: Promedio. De: Desviacion estandar.

preciables entre una misma muestra, con el uso de 4 y 5 puntos de Gauss por elemento, igual densidad de
malla en estructuras sin/con canal medular. Igualmente estos modelos exhiben pequefias diferencias de
sus resultados (menor al 8.24 y 9.15% en estructuras sin/con canal medular, respectivamente) en compa-
racion con los modelos de la misma muestra que utilizan 1 punto de Gauss por elemento. Este comporta-
miento global de la estructura se puede justificar por la similitud del médulo elastico calculado por ele-
mento con 4 y 5 puntos de Gauss con pequeiia diferencia con el estimado con 1 punto de Gauss.

En la Fig. 10 se observa que las estructuras con canal medular requieren un niimero menor de elemen-
tos para lograr la convergencia por carga, energia de deformacion y esfuerzo versus nimero de elementos
(en promedio 18.40, 15.93, y 17.77%, respectivamente), en comparacion con la misma estructura sin ca-
nal medular. Esto se atribuye a que la médula 6sea posee propiedades mecanicas bajas, no proporcionan-
do capacidad de resistir carga a la estructura osea.

En la tabla 5 se presentan los errores porcentuales por carga de cada modelo de estructura dsea comple-
ta sin/con canal medular. En ella se indica que una misma estructura 6sea simulada bajo las mismas con-
diciones de borde, igual densidad de malla, diferentes técnicas de reconstruccion y puntos de Gauss, ex-
hiben resultados bastante precisos y exactos, con errores porcentuales muy similares (estructura 1:
4.794£3.07, estructura 2: 7.67+4.51).
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Fig. 11. Estudio de convergencia para especimenes ctibicos simulados a compresion en las direcciones longitudinal y trans-
versales.

Las curvas contenidas en la Fig. 11 referentes al analisis de convergencia por carga, energia de defor-
macion y esfuerzo, contra nimero de elementos tetraédricos (con 1, 4 y 5 puntos de Gauss) y hexaédricos
(con 1, 8 y 27 puntos de Gauss), de probetas ctbicas simuladas en compresion en diferentes direcciones
(longitudinal y transversales), como material ortotropico empleando las expresiones de las ecuaciones
(5¢) y (6), indican que los modelos simulados con igual tipo de elemento, densidad de malla, direccion de
la carga y diferentes puntos de Gauss, presentan iguales comportamientos. Igualmente se observa que los
modelos ctbicos con el uso de elementos hexaédricos logran la convergencia por carga en las diferentes
direcciones, contra nimero de elementos, con un 73% menos del numero de elementos requeridos para
lograr la convergencia con elementos tetraédricos, y diferentes puntos de Gauss. Mientras que estos mo-
delos 6seos alcanzan la convergencia de los resultados al mismo tiempo por energia de deformacion y
esfuerzo (en las diferentes direcciones) versus numero de elementos hexaédricos, con un 27.52% menos
del nimero de elementos con los cuales los mismo modelos obtienen la convergencia con el uso de ele-
mentos tetraédricos.

También se desprende de los resultados presentados en las Figs. 9, 10y 11 que la convergencia por car-
ga requiere menos numero de elementos necesarios para que el mismo modelo logre la convergencia de
los resultados por energia de deformacion o esfuerzo. Esto se puede atribuir a que el MEF primero efec-
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tua los calculos con la carga y los desplazamientos, para luego calcular esfuerzo y energia de deforma-
cion, generando errores de aproximacion.

Por lo tanto, en base a los resultados obtenidos en el presente estudio se puede sugerir que la malla que
logra la convergencia de los resultados numéricos por esfuerzo o energia de deformacion contra nimeros
de elementos, con la aplicacion de la metodologia antes descrita, es adecuada para producir resultados
confiables de carga, desplazamiento, esfuerzo o deformacion en el rango elastico.

4. CONCLUSIONES

El estudio de convergencia de modelos de tejido 6seo cortical bovino permite afirmar que es factible
simular a través del MEF la curva carga — desplazamiento en el rango elastico observada experimental-
mente, con el uso de la ecuacion propuesta por [S] para estructuras Oseas ensayadas a traccion y compre-
sion, mediante la correcta construccion del modelo sélido, asignacion de propiedades heterogéneas a tra-
vés de TAC y condiciones de contorno.

La convergencia por carga, energia de deformacion y esfuerzo versus niimero de elementos, de modelos
heterogéneos de tejido oseo cortical simulados a traccion uniaxial, como material isotropico, y ortotropico
a través de las relaciones presentadas por [50] para tejido cortical bovino, con igual condiciones de borde,
tipo de elemento, densidad de malla y diferentes puntos de Gauss por elemento tetraédrico, no generan
diferencias importantes en las respuestas de los modelos 6seos.

Los modelos mejorados (con canal medular) de estructuras completas ensayadas a compresion presen-
tan una disminucidn significativa del nimero de elementos para lograr la convergencia por carga, energia
de deformacion y esfuerzo versus niumero de elementos respectivamente, en comparacion con los mode-
los 6seos sin canal medular, con diferencias despreciables entre sus resultados.

La reconstruccion de los modelos 6seos largos con canal medular reporta grandes beneficios cuando se
requiere utilizar la misma malla con distintos modelos de materiales y/o distintas condiciones de borde
por disminuir el nimero de elementos en la malla.

La convergencia por carga, energia de deformacion y esfuerzo versus numero de elementos, en modelos
cubicos simulados a compresion es mucho mas rapida con el uso de elementos hexaédricos que con ele-
mentos tetraédricos, independientemente del nimero de puntos de Gauss utilizados por elemento y la
direccion de la carga compresiva.

La convergencia de modelos de tejido 6seo cortical con diferentes puntos de Gauss por elemento, es
mas lenta por esfuerzo y energia de deformacion versus nimero de elementos en comparacion con la
convergencia de los resultados por carga contra niimero de elementos.

Los resultados mostrado en esta investigacion reflejan que el uso de diferentes puntos de Gauss por
elemento tetraédrico en modelos de probetas ensayadas a traccion, estructuras completas sin/con canal
medular ensayadas a compresion, y modelos ctbicos simulados a compresion, no fue determinante para
acelerar la convergencia de los resultados considerando una tendencia de los mismos menor al 2.5%.

Los resultados mostrados en este estudio reflejan que la convergencia de los resultados por carga contra
numero de elementos es mucho mas rapida en comparacion con los analisis de convergencia por energia
de deformacion y esfuerzo versus nimero de elementos.
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STUDY OF CONVERGENCE BY FINITE ELEMENT ANALYSIS IN CORTICAL
BONE TISSUE

Abstract — In recent decades research has been published on bone simulations in which the finite element
method is used to estimate the mechanical properties or behavior of the tissue before certain loads. In all these
investigations it is essential to know with the greatest possible accuracy the mechanical behavior of this biologi-
cal material. This research analyzed the convergence of numerical results obtained from simulations of digital
bone structures using the finite element method, in order to provide an efficient methodology. Bovine cortical
tissue specimens were constructed, which were performed computed tomography for the generation of geome-
try and the assignment of mechanical properties. Simulations were developed varying the size of the mesh in
order to describe the convergence by stress, load and strain energy versus number of elements. The convergence
of the tensile simulations behave independently of the properties assigned as isotropic or orthotropic material.
Compression simulations of complete structures with medullary channel and the use of hexahedral elements in
cubic samples, significantly reduced the number of elements required to achieve convergence, compared to the
use of complete structures without medullary channel and the use of tetrahedral elements in cubic samples, re-
spectively. The convergence of the different bone models is slower by stress and deformation energy versus
number of elements. We suggest an efficient methodology for the simulation of computational bone structures
using the finite element method to obtain reliable results.

Keywords — Density, convergence analysis, modeling, cortical bone tissue.
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