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Resumen – En las recientes décadas se publican investigaciones sobre simulaciones óseas en las que se utiliza 
el método de los elementos finitos para estimar las propiedades mecánicas o el comportamiento del tejido ante 
determinadas cargas. En todas estas investigaciones es esencial conocer con la mayor exactitud posible el com-
portamiento mecánico de este material biológico. En esta investigación se analizó la convergencia de los resul-
tados numéricos obtenidos de las simulaciones de estructuras óseas digitales mediante el método de los elemen-
tos finitos, con el fin de proporcionar una metodología eficiente. Se construyeron probetas de tejido cortical bo-
vino, a las cuales se les practicaron tomografías computarizadas para la generación de la geometría y la asigna-
ción de propiedades mecánicas. Se desarrollaron simulaciones variando el tamaño de la malla con el fin de des-
cribir la convergencia por esfuerzo, carga y energía de deformación versus número de elementos. La conver-
gencia de las simulaciones a tracción se comporta independiente de las propiedades asignadas como material 
isotrópico u ortotrópico. Las simulaciones a compresión de estructuras completas con canal medular y el uso de 
elementos hexaédricos en muestras cúbicas, redujo significativamente el número de elementos necesarios para 
lograr la convergencia en comparación con el empleo de estructuras completas sin canal medular y el empleo de 
elementos tetraédricos en muestras cúbicas, respectivamente. La convergencia de los diferentes modelos óseos 
es más lenta por esfuerzo y energía de deformación versus número de elementos. Se sugiere una metodología 
eficiente para la simulación de estructuras óseas computacionales mediante el método de los elementos finitos 
para la obtención de resultados confiables. 
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1. INTRODUCCIÓN 

Debido a la naturaleza propia, a la adaptabilidad de la anatomía y a la morfología del tejido, las estruc-
turas óseas obedecen en el tiempo a los estímulos producidos por las cargas externas, haciendo de esta 
forma que sus propiedades mecánicas no sean homogéneas [1]. En 1892, Wolff [2] fue el pionero en ob-
servar y explicar el proceso de adaptabilidad y remodelado que tiene lugar en huesos sanos luego de la 
ocurrencia de cambios o daños patológicos. Varias décadas más tarde, se estudió el comportamiento a 
postfluencia y fractura de huesos y se propuso un método para visualizar las diferencias físicas entre las 
regiones sometidas a tensión y a compresión [3]. Luego se utilizaron secciones delgadas de hueso cortical 
diafisario de fémur bovino y humano para describir las propiedades en un modelo transversalmente iso-
trópico [4].  

En 1977, se propone una relación potencial entre la densidad aparente y las propiedades mecánicas en 
especímenes de hueso trabecular bovino y humano [5]. En ese trabajo, se sostiene que las propiedades a 
nivel microscópico de los tejidos trabeculares y corticales son estructuralmente similares, difiriendo solo 
en el grado de porosidad. De acuerdo a las observaciones, se estima que el módulo elástico a compresión 
para tejido óseo ܧ es aproximadamente proporcional a la velocidad de deformación ߝሶ y al cubo de la den-
sidad aparente del hueso ρ, de la forma: 
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ܧ  ൌ ሶ଴.଴଺ߝ௖ܧ ቀ
ఘ

ఘ೎
ቁ
ଷ
 (1) 

donde ܧ௖ es el módulo elásticos a compresión del tejido compacto a una rapidez de deformación de 1 s-1 y 
ρc es la densidad del tejido cortical. 

Más tarde las propiedades elásticas ortotrópicas en muestras cúbicas de tejido cortical de fémures hu-
manos y caninos se determinaron con ultrasonido [6]. Se establecen expresiones donde la relación entre 
las propiedades elásticas y la densidad es distinta para el hueso trabecular y el cortical [7]. Luego se des-
cribe el comportamiento mecánico anisotrópico de la región metafisaria [8], con un módulo elástico dife-
rente al diafisario, el cual es definido como un modelo isotrópico transversal con constantes elásticas en 
tensión propuestas por [4]. En este estudio, se determinó el módulo elástico para el hueso cortical y trabe-
cular en dirección axial y transversal usando una densidad aparente como variable de control [8]. Un gran 
número de relaciones matemáticas que determinan el módulo elástico en función de la densidad han sido 
propuestas por varios autores [9-23].  

Otros estudios han determinado el comportamiento mecánico del tejido óseo empleando técnicas de na-
noindentacion. Las propiedades mecánicas por la composición así como la organización a los niveles de 
la micro-, meso- y macro-estructura se estimó mediante nanoindentación por [24]. En esta investigación 
se concluyó que la nanoestructura del tejido óseo difiere sustancialmente entre los sitios anatómicos y los 
individuos. Se sugiere que la heterogeneidad del hueso es de importancia en la fragilidad, el proceso de 
adaptación y remodelado óseo. Igualmente otros investigadores mediante nanoindentación determinaron 
las constantes elásticas anisotrópicas de la matriz extracelular ósea bovina validadas con ensayos mecáni-
cos de tracción. Los resultados arrojaron diferencias entre el 2% y el 13% [25]. También se ha investiga-
do la influencia de cargas cíclicas en tejido cortical in vitro. En la investigación de [26] realizaron ensa-
yos de fatiga en tejido óseo cortical bajo cargas axiales, torsionales y combinadas (axial-torsional). En 
este estudio se demostró que la superposición de torsión y carga axial reduce significativamente la vida a 
la fatiga del hueso cortical.  

Las pruebas mecánicas son técnicas más directas para evaluar las propiedades mecánicas del hueso al 
igual que otros materiales. Sin embargo, realizar ensayos mecánicos al tejido óseo es complejo por las 
limitaciones que representa la obtención, conservación, construcción de probetas y la aplicación de prue-
bas mecánicas a condiciones fisiológicas normales. Ante esta situación, la simulación numérica ofrece 
una alternativa que permite explorar y generar nuevo conocimiento para entender el comportamiento 
biomecánico de un material biológico como uno estructural complejo que en general no puede ser estu-
diado de forma analítica.  

La construcción de modelos óseos mediante el método de los elementos finitos (MEF) se introdujo por 
primera vez en la literatura ortopédica en 1972 [27], unos quince años después de ser iniciada esta técnica 
de análisis de esfuerzos en ingeniería mecánica. Desde entonces numerosas publicaciones muestran ha-
llazgos significativos y conceptos útiles generados por este método en el estudio del comportamiento 
mecánico del tejido óseo, las cuales han servido para ilustrar sus capacidades y limitaciones. 

Progresos en las mediciones de la densidad ósea han permitido determinar la relación que existe entre 
las densidades aparentes del hueso, la atenuación de imágenes provenientes de tomografías axiales 
computarizadas (TAC) y las propiedades mecánicas del tejido mediante el MEF [28-33]. Zannoni et al. 
[28] desarrollaron un algoritmo para la generación de mallas por el MEF y la adquisición de propiedades 
mecánicas a partir de TAC siguiendo las relaciones propuestas por [5]. Wirtz et al. [29] mediante el MEF 
estudiaron el comportamiento mecánico de un fémur humano con las correlaciones de las densidades 
aparentes longitudinales y transversales de tejidos cortical y trabecular propuestas por [8]. Taylor et al. 
[30] determinaron las constantes elásticas ortotrópicas de un fémur humano completo fresco mediante un 
modelo de elementos finitos basado en la información obtenida de TAC y análisis modales. Las constan-
tes elásticas fueron comparadas con las experimentales utilizando técnicas de ultrasonido. Buroni et al. 
[31] cuantificaron las distribuciones de esfuerzos y deformaciones alrededor de implantes óseos. Deter-
minan las constantes elásticas anisótropas del tejido óseo utilizando imágenes de TAC y el MEF. Perillo-
Marcone et al. [32] simularon el comportamiento mecánico de una tibia humana con las correlaciones 
para densidades aparentes propuestas por [5] y [10] mediante TAC y el MEF. Helgason et al. [33] compa-
ran los resultados obtenidos mediante simulaciones numéricas sobre el comportamiento mecánico de un 



 N. Gómez-Ruiz et al./ Revista Iberoamericana de Ingeniería Mecánica 21(2), 85-103 (2017) 87 

fémur humano con los obtenidos mediante mediciones experimentales empleando dos aproximaciones 
distintas para la asignación de las propiedades mecánicas. Una de las aproximaciones consistió en la asig-
nación del módulo elástico a los elementos finitos de acuerdo a la información obtenida de TAC y ecua-
ciones empíricas a partir de la densidad aparente. Mientras que la otra estrategia radicó en la asignación 
de propiedades mecánicas constantes. Los resultados indicaron que la asignación de propiedades hetero-
géneas presenta menos desviaciones con respecto a datos experimentales.  

Varios investigadores han estudiado el efecto del tamaño de los elementos por el MEF sobre los resul-
tados numéricos. Keyak y Skinner [34] analizaron tres modelos de fémur proximal humano, cada uno con 
un tamaño de elemento hexaédrico diferente. Los resultados indicaron que los elementos hexaédricos 
deben ser muy pequeños para representar las fuertes variaciones en las propiedades mecánicas que existen 
en el hueso y que el incremento del tamaño de los elementos disminuye los esfuerzos y deformaciones. 
Ellos afirman que la convergencia de la energía de deformación no asegura que una malla particular sea 
adecuada para producir resultados exactos de esfuerzo o deformación. Niebu et al. [35] a partir de mues-
tras vertebrales humanas y dos huesos trabeculares provenientes de tibia bovina analizados por el MEF, 
concluyeron que la convergencia de los resultados dependía tanto del modo de carga (axial/corte) como 
de la fracción volumétrica de la muestra. Igualmente, Ayturk y Puttlitz [36] analizaron un modelo de vér-
tebras lumbares humana por el MEF (L1-L5), verificaron la convergencia por energía de deformación. El 
modelo convergido fue validado en base al rango de movimiento, la presión intradiscal, el esfuerzo ósea 
cortical anterolateral y las deformaciones de ligamento longitudinal anterior. Anitha et al. [37] evaluaron 
el efecto de la exposición de la dosis de rayos X (80, 150, 220 y 500) mAs sobre la carga de fractura en 
vertebras humanas. La asignación del módulo elástico se llevó a cabo por medio de expresiones matemá-
ticas propuestas en la literatura en función de la densidad, la cual se estimó a partir de imágenes de TAC. 
En este estudio se llevó a cabo un análisis de convergencia de la carga de fractura versus número de ele-
mentos. La convergencia se logró con elementos de 5mm de arista. Los valores de carga de fractura pro-
nosticados por el MEF no se vieron afectados por la exposición de 500 a 80 mAs, sin diferencias signifi-
cativas. Sugiura et al. [38] investigaron los desplazamientos relativos por el MEF en el hueso cortical 
implantado en la mandíbula y la distribución de esfuerzo bajo cargas. Se realizó una prueba de conver-
gencia de los modelos para verificar la calidad de la malla, el criterio de convergencia se fijó en menos 
del 1% en los cambios de energía de deformación. Con base en los resultados de la prueba de convergen-
cia, se fijó un tamaño de arista de los elementos de 0.6 mm. 

Los estudios descritos sobre simulaciones óseas muestran procedimientos para desarrollar modelos 
óseos utilizando el MEF. Sin embargo, estos modelos son sensibles a variables como por ejemplo la geo-
metría, la discretización del volumen, las propiedades del material, las condiciones de borde y el tipo de 
elemento, como lo sugiere [39]. En estas investigaciones es esencial conocer con la mayor exactitud posi-
ble los resultados numéricos. Por lo tanto, la presente investigación tiene como objetivo analizar la con-
vergencia en modelos de tejido óseo cortical bovino altamente heterogéneos simulados a tracción (con 
propiedades isotrópicas y ortotrópicas) y compresión (con propiedades ortotrópicas) uniaxial mediante el 
MEF, con el propósito de determinar una metodología eficiente para la obtención de resultados confia-
bles. La convergencia se analiza por carga, energía de deformación y esfuerzo versus número de elemen-
tos. La asignación de las propiedades mecánicas a los modelos óseos se desarrolla mediante la lectura 
densidades aparentes leídas de las TAC en diferentes puntos de Gauss por elemento. Los modelos óseos 
de probetas ensayadas a tracción y compresión de estructuras largas, son comparados con datos experi-
mentales como único medio para validar los resultados numéricos. 

2. MATERIALES Y MÉTODOS 

 
La metodología empleada es resumida en las siguientes etapas: fabricación y conservación de los espe-

címenes, estimación de las densidades a partir de imágenes tomográficas, ensayos mecánicos, simulacio-
nes numéricas, criterio de convergencia y validación de los modelos.  
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2.1. Fabricación y conservación de los especímenes 

Todas las muestras empleadas en el presente trabajo corresponden a animales bovinos de los cuales se 
desconocen las características de raza, edad, alimentación y sexo. 

2.1.1.  Especímenes para los ensayos a tracción 

A partir de dos muestras distintas de fémures frescos se construyeron igual número de probetas para en-
sayos mecánicos a tracción, como la mostrada en la Fig 1. Las dimensiones de la geometría de las probe-
tas se estandarizan de acuerdo a lo establecido por la ASTM, donde ܦ ݀⁄ ൌ 2, la longitud de la región de 

 

Fig. 1. Dimensiones en milímetros de la geometría de la probeta de tracción. 
a=104, b=34, c= 26, D=12, d=6, e= 4, L=25, r=15. 

 
Fig. 2. Proceso de mecanizado de las probetas de tracción donde se muestra (a) hidratación durante el mecanizado, (b) con-

torno final de la probeta, (c) generación de espesor y (d) geometría final. 
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medición es ܮ	 ൎ 3݀ y la longitud de agarre ܿ ൌ 	 భ
ర
ܽ, siendo ܽ la longitud total del espécimen. Todos los 

especímenes fueron extraídos haciendo coincidir su longitud mayor con la dirección longitudinal de las 
muestras femorales. De igual forma, siguiendo [40] y [41], una vez cortadas las muestras, estas fueron 
hidratadas en solución isotónica, envueltas en gasa y plástico hermético y refrigeradas a -20ºC. 

Para la fabricación de las probetas se empleó una fresadora a control numérico marca Chevalier, mode-
lo QP1620-L. Como se muestra en la Fig. 2(a), para la sujeción de las muestras en la prensa se eliminaron 
las epífisis obteniéndose así una longitud diafisaria femoral de aproximadamente 150 mm. Las velocida-
des de avance y de rotación de la herramienta de corte se fijaron en 1000 mm/min y 300 rev/min, respec-
tivamente. 

Para evitar la deshidratación debido al calor generado durante el corte, las probetas fueron hidratadas 
utilizando una solución isotónica de cloruro de sodio al 0.9%. El paso en la profundidad de desbaste se 
estableció en 2 mm hasta la extracción de la probeta. En la Fig. 2(b) se observa la obtención del contorno 
completo de la probeta. En la Fig. 2(c) se puede apreciar el proceso de mecanizado que tiene como obje-
tivo conseguir las superficies planas de las probetas. El avance y rotación de la herramienta de corte se 
fijó en 700 mm/min y 300 rev/min, respectivamente. La geometría final de la probeta fabricada se mues-
tra en la Fig. 2(d). 

2.1.2.  Especímenes para ensayos a compresión 

De dos radios se generaron dos probetas consistentes en estructuras completas para ser ensayadas a 
compresión, como se ilustra en la Fig. 3. En los especímenes se procura que las epífisis estén planas y 
paralelas a fin de evitar movimientos laterales durante el ensayo [40]. La creación de caras paralelas en 
este tipo de probetas se logró con una sierra de cinta rotando a una velocidad 300 rev/min. Siguiendo el 
proceso arriba descrito, las muestras fueron hidratadas durante el proceso de corte. La Fig. 3 también 
muestra de forma esquemática un hueso largo con el canal medular, donde a diferencia del tejido óseo, el 
material orgánico contenido en la cavidad medular presenta propiedades mecánicas bajas. 

 

Fig. 3. Geometría de la probeta de compresión. 
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2.2. Estimación de las densidades a partir de imágenes tomográficas 

En este estudio se obtuvieron imágenes de tomografías axiales computarizadas (TAC) de las probetas a 
ser ensayadas a tracción y a compresión. Para ello, se empleó un tomógrafo Siemens Somaton Spirit mo-
delo SyngoC.T.2007P. Las imágenes obtenidas fueron almacenadas digitalmente en formato DICOM de 
512x512 pixeles con un voxel de 1.17×1.17×1.00 mm3. Al igual que en [30] y en [42], se supone una 
relación lineal entre las densidades del tejido y las lecturas en UH. De este modo, la densidad del hueso 
compacto fue estimada como 1.8 g/cm3; mientras que la densidad del aire se aproximó a partir de las con-
diciones de presión y temperatura en la sala para el día y la hora de las lecturas. Así, las correspondientes 
densidades teóricas de aire toman los valores de 0.969×10-3 y 1.085×10-3 g/cm3 para las muestras de trac-
ción y de compresión, respectivamente.  

La densidad del hueso compacto se correlacionó a los valores máximos de UH leídos de las imágenes 
de TAC; es decir, 2420 y 1610 UH para las probetas de tracción y de compresión, respectivamente; mien-
tras que las densidades del aire se correlacionaron al valor de -1000 UH. A partir de las relaciones esta-
blecidas, las densidades aparentes en función de las UH para las probetas de tracción y de compresión son 
respectivamente 

ሾgߩ  cmଷ⁄ ሿ ൌ 5.26 ൈ 10ିସܷܪ ൅ 0.53 (2a) 

ሾgߩ  cmଷ⁄ ሿ ൌ 6.85 ൈ 10ିସܷܪ ൅ 0.69     (2b) 

2.3. Ensayos mecánicos 

Las pruebas se realizaron en una máquina de ensayos mecánicos marca MTS. Las velocidades de des-
plazamiento del pistón se fijaron en 0.005 y 0.0833 mm/s para los ensayos de tracción y de compresión, 
respectivamente. Las distintas muestras fueron hidratadas con solución isotónica de cloruro de sodio du-
rante las pruebas mecánicas. 

2.4.  Simulaciones numéricas  

 La simulación numérica de volúmenes computacionales de hueso cortical es presentada en las si-
guientes fases: construcción de volúmenes computacionales, discretización de los modelos, discretización 
y asignación de los campos de propiedades físicas y mecánicas, condiciones de frontera y criterio de con-
vergencia. 

2.4.1 Construcción de volúmenes computacionales 

La reconstrucción digital de los volúmenes de las probetas de tracción y de compresión se realizó a par-
tir de imágenes tomográficas empleando una técnica de segmentación manual. Para ello, se describieron 
las imágenes secuenciales de las TAC usando el programa Surfdriver®, el cual representa los volúmenes 
como un conjunto de puntos y líneas. Para las probetas de compresión se obtienen dos modelos; un pri-
mer modelo que se define segmentando solo el contorno externo del hueso y un segundo modelo que 
reconstruye tanto la superficie externa del hueso como la superficie correspondiente al canal medular. 
Para identificar cada modelo, estos son así denominados como estructura completa sin canal medular y 
estructura completa con canal medular. El objetivo de modelar las estructuras con y sin canal es el de 
estudiar la influencia de la médula ósea en la rapidez de convergencia de la solución, así como, la desvia-
ción de los resultados numéricos respecto a los obtenidos experimentalmente. 

En un programa de elementos finitos como [43] se recrean las superficies que se adaptan a los contornos 
obtenidos, describiendo así los volúmenes de las probetas como superficies cerradas a partir de las cuales se 
pueden definir unívocamente los dominios a considerar en las simulaciones numéricas. Los modelos sólidos 
obtenidos a partir de las tomografías de las probetas de tracción y compresión se representan en la Fig. 4. 
En la Fig. 4(a) se tiene una representación tridimensional de la probeta de tracción. En las Figs. 4(b) y 
4(c) se muestran para cada caso dos vistas de las estructuras completas para las simulaciones a compre-
sión sin y con canal medular.  
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Empleando la metodología descrita anteriormente se generaron volúmenes cúbicos. La segmentación se 
realizó a partir de imágenes de TAC practicada a la diáfisis femoral de una de las muestras óseas, con el 
fin de estudiar la convergencia de estos modelos simulados a compresión en distintas direcciones.  

2.4.2.  Discretización de los modelos 

Para el modelado discreto de los volúmenes de las probetas numéricas se emplearon mallas no estructu-
ras generadas automáticamente considerando elementos tetraédricos de 10 nodos.  

A fin de realizar un análisis de convergencia, es necesario estimar los errores de las aproximaciones de 
los campos de interés; es decir, esfuerzos, deformaciones y energía de deformación, y refinar adaptativa-
mente el mallado de los volúmenes. Para cada refinamiento se definió el tamaño de la arista de los ele-
mentos, como se muestra en las tablas 1, 2 y 3. Específicamente, en las tablas 1 y 2 se puede observar el 
número resultante de elementos tetraédricos cuadráticos para las probetas de tracción y de compresión. 

 

Fig. 4. Modelos numéricos de los volúmenes de los especímenes de (a) tracción, compresión (b) sin y (c) con canal medular 

Tabla 1. Número de elementos tetraédricos en los modelos de probetas de tracción. 

Tamaño del 
Elemento [mm] 

Probeta 1 Probeta 2 

4.00 266 270 
3.50 372  352 
3.00 444 419 
2.50 732 739 
2.00 1406 1141 
1.50 3158 3188 
1.00 10582 9931 
0.90 14070 14791 
0.80 22748 19528 
0.70 32063 29729 
0.60 51355 48640 
0.50 87644 82932 
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De forma similar, en la tabla 3 se presenta el número de elementos para las probetas cúbicas a compre-
sión; sin embargo, en este caso en las simulaciones se emplearon elementos tetraédricos cuadráticos y 
hexaédricos lineales; esto con el objetivo de analizar las diferencias en la rapidez de convergencia con 
diferentes elementos y puntos de Gauss. 

2.4.3. Discretización y asignación de los campos de propiedades físicas y mecánicas  

En las siguientes dos secciones se explica el método de discretización y asignación de los valores loca-
les promedios de los campos originales de la densidad como propiedad física y del módulo elástico como 
propiedad mecánica.  En este sentido, estas variables fueron expresadas como integrales ponderadas sobre 
el volumen de los elementos empleados.  

2.4.3.1.  Aproximación del campo de densidades 

Una simplificación de uso práctico consiste en la descripción del campo de densidades del tejido como 
un valor único definido en las correspondientes coordenadas centroidales de los volúmenes discretos [44]. 
Este procedimiento se realizó con un programa desarrollado por [45], en el cual se leen las UH de las 
imágenes tomográficas y se calcula la densidad aparente empleando las expresiones descritas en la ecua-
ción (2). Para estimar el valor centroidal de la densidad ̅ߩ௘ se emplea el método de cuadratura de Gauss 
para integrar la expresión  

௘ߩ̅  ൌ ܸ݀ߩ׬ ௘ܸ⁄  (3) 

Tabla 2. Número de elementos tetraédricos en modelos de probetas de compresión. 

Tamaño del 
elemento 

[mm] 

Número de elementos 
Probeta 1 Probeta 2 

sin canal con canal  sin canal con canal 
6.40 8725 5249 7183 4678 
5.10 14699 11977 11044 11616 
4.70 18924 17410 13619 13324 
4.10 28469 22776 21172 19292 
3.10 64234 50652 46314 40985 
2.80 87945 67868 62941 56645 
2.50 120664 92869 90109 80891 
2.35 147377 111604 108677 95738 
2.20 183409 138861 135375 116212 
2.10 208064 156398 153742 131158 
2.00 239998 181300 175636 147663 

 

Tabla 3. Tamaño y número de elementos tetraédricos y hexaédricos en los especímenes cúbicos simulados a compresión. 

Elementos tetraédricos  Elementos hexaédricos  
Tamaño Número Tamaño Número 

3.00 100 4.00 1 
1.50 239 2.00 8 
1.00 561 1.50 27 
0.90 814 0.90 125 
0.70 1515 0.70 216 
0.40 7369 0.40 1000 
0.30 21503 0.30 2744 
0.25 33225 0.20 8000 
0.23 46443 0.16 15625 
0.22 54234 0.12 39304 
0.20 64278 0.10 64000 
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donde ߩ representa la densidad en los puntos de Gauss y ௘ܸ el volumen del elemento. Para las distintas 
simulaciones, los valores centroidales de densidad fueron calculados considerando 1, 4 y 5 puntos para 
los modelos discretizados usando elementos tetraédricos y 1, 8 y 27 puntos para los modelos con elemen-
tos hexaédricos.  

La Fig. 5 ilustra los campos discretos de densidades para los tres modelos de probetas digitales. Especí-
ficamente, en la Fig. 5(a) se muestra la distribución de densidad donde se aprecia un valor máximo 
2.34	g/cmଷ para este tejido cortical; este valor está en correspondencia con los valores promedios en la 
región diafisiaria de donde proviene la probeta. En la Fig. 5(b) se puede apreciar valores más elevados de 
densidad a nivel de la diáfisis (ൎ 1.99	g/cmଷ), esto por estar en esa zona el tejido más compacto. Ahora, 
en la región lateral derecha de la probeta se observa la menor densidad (ߩ௔௜௥௘ ൌ 1.0 ൈ 10ିସ	g/cmଷ), esto 
por no estar el cúbito alojado. En la estructura sin canal medular de la Fig. 5(b), el espacio ocupado por la 
médula ósea posee densidades que varían en el rango de 0.662 ൑ ௠éௗ௨௟௔ߩ ൑ 0.883 g cmଷ⁄ ; valores que 
se corresponden a los esperados para este material orgánico. La Fig. 5(c) presenta una distribución de 

 

Fig. 5. Campos discretos de densidades en los especímenes (a) de tracción, (b) de compresión sin y con canal medular y (c) 
cúbico de compresión. 
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densidad en el rango 1.609 ൑ ௖௢௥௧௜௖௔௟ߩ ൑ 2.314 g cmଷ⁄  del modelo cúbico extraído digitalmente de la 
diáfisis femoral de una de las muestras óseas. 

2.4.3.2. Aproximación del campo del módulo elástico 

Al igual que para el campo de densidades, el módulo elástico puede ser aproximado a nivel de cada 
elemento por su correspondiente valor centroidal. Para definir estos valores centroidales, se postula que 
los módulos elásticos siguen la expresión propuesta por [5], como se detalla en la ecuación (1). El uso de 
esta expresión requiere la estimación de la densidad de la matriz mineral del hueso cortical (ߩ௖), el módu-
lo elástico a compresión (ܧ௖) y la rapidez de deformación (ߝሶ). De esta forma, para el valor de la densidad 
de la matriz, se considera que esta tiene un valor aproximado de ߩ௖ ൌ 1.8	g/cmଷ [5]. En los modelos, el 
valor del módulo elástico a compresión se ajusta a los siguientes valores; para las probetas de tracción 
௖ܧ ൌ 9.9	GPa [46], para las probetas de compresión EC = 26.6 GPa [26] y para las probetas cúbicas se 
considera la función potencial propuesta por [47]; ajustada de acuerdo a [48] y [49], donde ܧ௖ en GPa 
viene expresado en términos de la velocidad de deformación de la forma: 

௖ܧ  ൌ  ሶ଴.଴ଵ଻ଽ଼ (4)ߝ11.69

La velocidad de deformación ߝሶ empleada se obtiene de la relación entre la velocidad de desplazamiento 
del pistón (0.005 y 0.0833 mm/s en las probetas de tracción y de compresión, respectivamente) y las co-
rrespondientes longitudes iniciales (52 y 240 mm, respectivamente). De esta forma se obtiene para cada 
modelo una rapidez de deformación de 96.2x10ି଺ y 347.2x10ି଺sିଵ. En los modelos cúbicos, la veloci-
dad de deformación es establecida como εሶ ൌ 1250x10ି଺sିଵ. Sustituyendo las estimaciones de ߩ௖, ܧ௖ y ߝሶ 
según los valores arriba descritos y bajo la hipótesis de isotropía, se pueden aproximar los valores del 
módulo elástico en GPa en los modelos de probetas de tracción, de compresión y cúbicas de compresión 
como una función de la densidad, donde 

௧௥௔௖௖௜ó௡ܧ  ൌ 975 ൈ 10ଷߩଷ (5a) 

௖௢௠௣௥௘௦௜ó௡ܧ  ൌ 2875 ൈ 10ଷߩଷ (5b) 

௖ú௕௜௖௔ܧ  ൌ 1190 ൈ 10ଷߩଷ (5c) 

Ahora, modelando el tejido cortical como ortotrópico, se supone que las propiedades elásticas; es decir, 
módulo de elasticidad, siguen las relaciones propuestas por [50]. De esta forma, 

ଷܧ  ൌ ଶܧ					;1.0 ൌ ଵܧ					;ଷܧ0.67 ൌ  ଷ (6a)ܧ0.53

ଵଶܩ  ൌ ଵଷܩ					;ଷܧ0.24 ൌ ଶଷܩ				;ଷܧ0.29 ൌ  ଷ (6b)ܧ0.32

ଵଶߥ  ൌ ଵଷߥ					;1.0 ൌ ;ଵଶߥ0.54 ଶଷߥ					 ൌ  ଵଶ (6c)ߥ0.81

donde los subíndices 1, 2 y 3 representan las direcciones transversal radial, transversal tangencial y longi-
tudinal, respectivamente. En el modelo, el módulo elástico en la dirección longitudinal se aproxima de 
acuerdo al modelo isotrópico previamente descrito y el coeficiente de Poisson se estableció en 12 = 0.302 
de acuerdo a [50] para hueso cortical bovino. 

2.4.4. Condiciones de frontera 

Para el modelado numérico del comportamiento elástico lineal de las distintas probetas se postulan las 
correspondientes condiciones de desplazamiento en superficies específicas de los volúmenes. Para el caso 
de las probetas de tracción, se imponen desplazamientos en los nodos de los planos transversales 12 don-
de inician las regiones de agarre de las mordazas de la máquina de ensayo, como se muestra en la Fig. 6. 
En el plano inferior se restringen los desplazamientos a lo largo de las direcciones transversal y longitudi-
nal; mientras que en el plano superior, se impone un desplazamiento positivo a lo largo de la dirección 
longitudinal y se restringen a lo largo de las direcciones transversales.  

Forma similar, para las probetas de compresión, los desplazamientos se restringen de forma tal que des-
criban la condición de contacto entre el espécimen y las mordazas, como se ilustra en la Fig. 7. En el 
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plano inferior (extremo distal) se restringen todos los desplazamientos; mientras que en plano superior 
(extremo proximal) se restringen los desplazamientos en el plano transversal y se impone un desplaza-
miento compresivo a lo largo de la dirección longitudinal. Para las probetas cúbicas de compresión, los 
desplazamientos impuestos exhiben características similares al caso anterior en planos opuestos. 

2.5. Criterio de convergencia 

En este estudio se generaron refinamientos de mallas de elementos finitos con el propósito de realizar 
un estudio de convergencia por carga, esfuerzo y energía de deformación versus número de elementos 
como lo sugiere [51]. El número de elementos presentes en cada modelo se muestran en las tablas 1, 2 y 
3. La convergencia de los resultados numéricos se probó en el elemento donde se obtuvo el valor máximo 
(criterio del valor máximo) por ser esta región la más importante según [52]. Para cada modelo (actual) se 
calcularon las diferencias porcentuales de los resultados numéricos con respecto al modelo de referencia 
(anterior) y se asumió que la malla estaba en convergencia si dicha diferencia porcentual era menor al 
2.5%, la cual es inferior a la diferencia asumida por [53]. 

 En el caso del análisis de sensibilidad por energía de deformación versus número de elementos en los 
modelos de probetas ensayadas a tracción y cúbicos simulados a compresión, se considera que la conver-
gencia se logra cuando los resultados se estabilizan con el mismo orden de magnitud. 

 

Fig. 6. Descripción de la región de agarre en probeta de tracción. 

 

Fig. 7. Extremo proximal y distal en probeta de compresión. 
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2.6. Validación de los modelos 

En las simulaciones primero se obtiene un modelo conceptual a partir de información del objeto real, 
que posteriormente es transferida a un modelo matemático. Mediante el empleo de un método adecuado, 
como el MEF, se puede resolver un modelo matemático complejo. Tomando ciertas suposiciones, el mo-
delo creado es sólo una versión simplificada del objeto real [54]. Por lo tanto, la validación es un proceso 
donde se demuestra que los resultados numéricos son lo suficientemente exactos para reproducir o prede-
cir un fenómeno físico [55]. 

En esta investigación se validan los modelos al estimar el error porcentual de los valores numéricas ob-
tenidas por el método de los elementos finitos con respecto a datos experimentales [55], de esta manera se 
comprueba si las simulaciones de las muestras óseas reproducen el comportamiento mecánico de este 
material biológico. La validación de los diferentes modelos se realiza comparando el valor de la carga 
obtenida con la malla en la cual los valores convergen con la carga (probeta 1 a tracción: 104.41 kgf, pro-
beta 2 a tracción: 77.88 kgf, estructura 1 a compresión: 4765.72 kgf, estructura 2 a compresión: 4564.62 
kgf) para el máximo desplazamiento de la región lineal obtenida experimentalmente (probeta 1 a tracción: 
0.1867 mm, probeta 2 a tracción: 0.1415 mm, estructura 1 a compresión: 1.726 mm, estructura 2 a com-
presión: 1.715 mm). 

3. RESULTADOS 

La Fig. 8 presenta las curvas experimentales de carga-desplazamiento para dos condiciones de carga en 
probetas distintas. En el primer caso, la Fig. 8(a) describe el comportamiento exhibido por dos probetas 
de tracción hasta la fractura. Igualmente, la Fig. 8(b) muestra el comportamiento real de dos probetas de 
estructuras completas sometidas a compresión. En ambas gráficas se aprecia una relación carga-
desplazamiento inicialmente lineal. En el caso de las probetas sometidas a tracción, el comportamiento 
continúa con una ligera no linealidad para luego seguir con el aumento de la capacidad de carga hasta la 
fractura. Las estructuras sometidas a compresión, posterior a la zona elástica lineal, muestran un compor-
tamiento no lineal hasta la falla. Como se puede observar de la comparación de las curvas de la Fig. 8, el 
tejido cortical en dirección longitudinal exhibe mayor capacidad de carga a compresión.  

La Fig. 9 presenta las curvas de convergencia por carga, energía de deformación y esfuerzo para las 
probetas simuladas en tracción. En los modelos numéricos se emplearon elementos tetraédricos y las va-
riables de interés fueron integradas empleando 1, 4 y 5 puntos de Gauss. Para el análisis, las propiedades 
elásticas del material fueron supuestas, en una primera aproximación, como isotrópica de acuerdo a la 
ecuación (5a), y luego, como ortotrópica empleando las expresiones de las ecuaciones (5a) y (6). De los 
resultados se puede observar que para diferentes puntos de Gauss e igual densidad de malla, no existen 

 

Fig. 8. Curvas experimentales carga-desplazamiento para las probetas (a) de tracción y (b) de compresión. 
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diferencias significativas entre una misma muestra simulada como material isotrópico o como uno or-
totrópico.   

En la tabla 4 se exhiben diferencias despreciables de error porcentual por carga entre los modelos de 
una misma muestra (Probeta 1: 10.910.16, Probeta 2: 2.61.24), siendo el error de los modelos con 1 
punto de Gauss ligeramente diferente en comparación con los estimados con 4 y 5 puntos de Gauss. El 
comportamiento similar de los modelos óseos como material isotrópico y ortotrópico se puede atribuir a 
que las propiedades mecánicas asignadas en dirección longitudinal son iguales como material isotrópico y 
ortotrópico, aunado a que el desplazamiento impuesto a los diferentes modelos es estrictamente en direc-
ción longitudinal. Los resultados obtenidos mediante el uso de diferentes puntos de Gauss por elemento 
tetraédrico no presentan variaciones importantes, esto se puede explicar por la baja dispersión de los valo-
res de densidades en la región de prueba de estas probetas, como se observa en la Fig. 5(a), permitiendo 
que el cálculo del módulo elástico incorporado en el centro de gravedad de cada elemento sean indepen-
dientes del número de puntos de Gauss empleados, por ser muy similar el promedio del módulo elástico 
con 4 o 5 puntos de Gauss, y con ligera diferencia con el calculado con 1 punto de Gauss. 

La Fig. 10 presenta las curvas de convergencias por carga, energía de deformación y esfuerzo contra 
número de elementos tetraédricos, con el uso de 1, 4 y 5 puntos de Gauss, de modelos de estructuras 
completas sin/con canal medular ensayadas a compresión, simulados como material ortotrópico emplean-
do las expresiones de las ecuaciones (5b) y (6). Estas gráficas muestran diferencias de resultados des-

Fig. 9. Estudio de convergencia para dos probetas de tracción considerando propiedades elásticas isotrópicas y ortotrópicas 
con 1,4 y 5 puntos de Gauss por elemento. 

Tabla 4. Error porcentual por carga en probetas simuladas a tracción. 

 Error porcentual  
 Material isotrópico Material ortotrópico P  De 

Puntos de Gauss 1 4 5 1 4 5  
Probeta 1 11.12 10.81 10.95 11.05 10.70 10.84 10.91  0.16 
Probeta 2 4.95 2.54 2.45 1.25 2.24 2.17 2.6  1.24 

P: Promedio. De: Desviación estándar 
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preciables entre una misma muestra, con el uso de 4 y 5 puntos de Gauss por elemento, igual densidad de 
malla en estructuras sin/con canal medular. Igualmente estos modelos exhiben pequeñas diferencias de 
sus resultados (menor al 8.24 y 9.15% en estructuras sin/con canal medular, respectivamente) en compa-
ración con los modelos de la misma muestra que utilizan 1 punto de Gauss por elemento. Este comporta-
miento global de la estructura se puede justificar por la similitud del módulo elástico calculado por ele-
mento con 4 y 5 puntos de Gauss con pequeña diferencia con el estimado con 1 punto de Gauss. 

En la Fig. 10 se observa que las estructuras con canal medular requieren un número menor de elemen-
tos para lograr la convergencia por carga, energía de deformación y esfuerzo versus número de elementos 
(en promedio 18.40, 15.93, y 17.77%, respectivamente), en comparación con la misma estructura sin ca-
nal medular. Esto se atribuye a que la médula ósea posee propiedades mecánicas bajas, no proporcionan-
do capacidad de resistir carga a la estructura ósea. 

En la tabla 5 se presentan los errores porcentuales por carga de cada modelo de estructura ósea comple-
ta sin/con canal medular. En ella se indica que una misma estructura ósea simulada bajo las mismas con-
diciones de borde, igual densidad de malla, diferentes técnicas de reconstrucción y puntos de Gauss, ex-
hiben resultados bastante precisos y exactos, con errores porcentuales muy similares (estructura 1: 
4.793.07, estructura 2: 7.674.51).  

 

Fig. 10. Estudio de convergencia para estructuras completas sin y con canal medular considerando propiedades elásticas 
ortotrópicas con 1, 4 y 5 puntos de Gauss por elemento. 

Tabla 5.  Error porcentual por carga en probetas de estructuras completas simuladas a compresión. 

 Error porcentual  
 Modelo sin canal medular Modelo con canal medular  

Puntos de Gauss 1 4 5 1 4 5 P  De
Estructura 1 10.97 3.94 3.90 2.49 3.74 3.72 4.793.07 
Estructura 2 1.32 9.40 9.46 2.69 11.54 11.60 7.674.51 

P: Promedio. De: Desviación estándar. 
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Las curvas contenidas en la Fig. 11 referentes al análisis de convergencia por carga, energía de defor-
mación y esfuerzo, contra número de elementos tetraédricos (con 1, 4 y 5 puntos de Gauss) y hexaédricos 
(con 1, 8 y 27 puntos de Gauss), de probetas cúbicas simuladas en compresión en diferentes direcciones 
(longitudinal y transversales), como material ortotrópico empleando las expresiones de las ecuaciones 
(5c) y (6), indican que los modelos simulados con igual tipo de elemento, densidad de malla, dirección de 
la carga y diferentes puntos de Gauss, presentan iguales comportamientos. Igualmente se observa que los 
modelos cúbicos con el uso de elementos hexaédricos logran la convergencia por carga en las diferentes 
direcciones, contra número de elementos, con un 73% menos del número de elementos requeridos para 
lograr la convergencia con elementos tetraédricos, y diferentes puntos de Gauss. Mientras que estos mo-
delos óseos alcanzan la convergencia de los resultados al mismo tiempo por energía de deformación y 
esfuerzo (en las diferentes direcciones) versus número de elementos hexaédricos, con un 27.52% menos 
del número de elementos con los cuales los mismo modelos obtienen la convergencia con el uso de ele-
mentos tetraédricos. 

También se desprende de los resultados presentados en las Figs. 9, 10 y 11 que la convergencia por car-
ga requiere menos número de elementos necesarios para que el mismo modelo logre la convergencia de 
los resultados por energía de deformación o esfuerzo. Esto se puede atribuir a que el MEF primero efec-

Fig. 11. Estudio de convergencia para especímenes cúbicos simulados a compresión en las direcciones longitudinal y trans-
versales. 
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túa los cálculos con la carga y los desplazamientos, para luego calcular esfuerzo y energía de deforma-
ción, generando errores de aproximación.  

Por lo tanto, en base a los resultados obtenidos en el presente estudio se puede sugerir que la malla que 
logra la convergencia de los resultados numéricos por esfuerzo o energía de deformación contra números 
de elementos, con la aplicación de la metodología antes descrita, es adecuada para producir resultados 
confiables de carga, desplazamiento, esfuerzo o deformación en el rango elástico. 

4. CONCLUSIONES 

El estudio de convergencia de modelos de tejido óseo cortical bovino permite afirmar que es factible 
simular a través del MEF la curva carga – desplazamiento en el rango elástico observada experimental-
mente, con el uso de la ecuación propuesta por [5] para estructuras óseas ensayadas a tracción y compre-
sión, mediante la correcta construcción del modelo sólido, asignación de propiedades heterogéneas a tra-
vés de TAC y condiciones de contorno.  

La convergencia por carga, energía de deformación y esfuerzo versus número de elementos, de modelos 
heterogéneos de tejido óseo cortical simulados a tracción uniaxial, como material isotrópico, y ortotrópico 
a través de las relaciones presentadas por [50] para tejido cortical bovino, con igual condiciones de borde, 
tipo de elemento, densidad de malla y diferentes puntos de Gauss por elemento tetraédrico, no generan 
diferencias importantes en las respuestas de los modelos óseos.  

Los modelos mejorados (con canal medular) de estructuras completas ensayadas a compresión presen-
tan una disminución significativa del número de elementos para lograr la convergencia por carga, energía 
de deformación y esfuerzo versus número de elementos respectivamente, en comparación con los mode-
los óseos sin canal medular, con diferencias despreciables entre sus resultados. 

La reconstrucción de los modelos óseos largos con canal medular reporta grandes beneficios cuando se 
requiere utilizar la misma malla con distintos modelos de materiales y/o distintas condiciones de borde 
por disminuir el número de elementos en la malla. 

La convergencia por carga, energía de deformación y esfuerzo versus número de elementos, en modelos 
cúbicos simulados a compresión es mucho más rápida con el uso de elementos hexaédricos que con ele-
mentos tetraédricos, independientemente del número de puntos de Gauss utilizados por elemento y la 
dirección de la carga compresiva. 

La convergencia de modelos de tejido óseo cortical con diferentes puntos de Gauss por elemento, es 
más lenta por esfuerzo y energía de deformación versus número de elementos en comparación con la 
convergencia de los resultados por carga contra número de elementos. 

Los resultados mostrado en esta investigación reflejan que el uso de diferentes puntos de Gauss por 
elemento tetraédrico en modelos de probetas ensayadas a tracción, estructuras completas sin/con canal 
medular ensayadas a compresión, y modelos cúbicos simulados a compresión, no fue determinante para 
acelerar la convergencia de los resultados considerando una tendencia de los mismos menor al 2.5%. 

Los resultados mostrados en este estudio reflejan que la convergencia de los resultados por carga contra 
número de elementos es mucho más rápida en comparación con los análisis de convergencia por energía 
de deformación y esfuerzo versus número de elementos. 
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STUDY OF CONVERGENCE BY FINITE ELEMENT ANALYSIS IN CORTICAL 
BONE TISSUE 

Abstract – In recent decades research has been published on bone simulations in which the finite element 
method is used to estimate the mechanical properties or behavior of the tissue before certain loads. In all these 
investigations it is essential to know with the greatest possible accuracy the mechanical behavior of this biologi-
cal material. This research analyzed the convergence of numerical results obtained from simulations of digital 
bone structures using the finite element method, in order to provide an efficient methodology. Bovine cortical 
tissue specimens were constructed, which were performed computed tomography for the generation of geome-
try and the assignment of mechanical properties. Simulations were developed varying the size of the mesh in 
order to describe the convergence by stress, load and strain energy versus number of elements. The convergence 
of the tensile simulations behave independently of the properties assigned as isotropic or orthotropic material. 
Compression simulations of complete structures with medullary channel and the use of hexahedral elements in 
cubic samples, significantly reduced the number of elements required to achieve convergence, compared to the 
use of complete structures without medullary channel and the use of tetrahedral elements in cubic samples, re-
spectively. The convergence of the different bone models is slower by stress and deformation energy versus 
number of elements. We suggest an efficient methodology for the simulation of computational bone structures 
using the finite element method to obtain reliable results. 

Keywords – Density, convergence analysis, modeling, cortical bone tissue. 
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