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Resumo – A introdução de orifícios, entalhes e rasgos em elementos de máquinas, equipamentos e peças em ge-
ral, é procedimento comum, visando atender necessidades funcionais, particularmente o acoplamento entre par-
tes afins. Entretanto, a presença desses incidentes geométricos não apenas diminui a área resistente dos compo-
nentes, como promove a ampliação do campo de tensões no seu entorno, demandando atenção especial do pro-
jetista quanto a sua resistência estrutural nesses casos. Um problema bastante interessante referente à concentra-
ção de tensões é o caso da flexão longitudinal de placas retangulares com orifício circular centralizado. Este 
possui uma série de características interessantes, sendo o propósito deste trabalho explorá-las através do recurso 
computacional do Método dos Elementos de Contorno, uma técnica de solução numérica simples e eficiente. 

Palavras-chave – Concentração de tensão, placas com orifício, análise computacional de placas. 

1. INTRODUÇÃO 

Existe um grande número de pesquisas que investigam o comportamento mecânico de placas com orifí-
cio, sendo uma das principais preocupações a avaliação dos fatores de concentração de tensão [1-12]. 

Muitos dos problemas de concentração de tensões foram analisados através dos métodos matemáticos 
da teoria da elasticidade [13,14], permitindo levantarem-se importantes relações entre as dimensões da 
peça e do entalhe, resultando em um correspondente fator para a elevação de tensões. 

Apesar dos esforços de pesquisadores [15,16], os quais buscam soluções exatas para tensões, deforma-
ções e deslocamentos de uma placa retangular com um orifício circular submetida a um momento de fle-
xão, usando a função de tensão de Airy. Ainda existe uma grande limitação no processo de obtenção da 
solução analítica nos casos em que a geometria do corpo é mais complexa. Praticamente a totalidade das 
tabelas específicas de valores de concentração de tensões foram construídas a partir de fontes como Ryan 
e Fischer [2] e Frocht e Leven [17] onde um esforço considerável de pesquisa foi despendido no desen-
volvimento e aplicação de métodos fotoelásticos, com relativo êxito.  

As respostas encontradas através dos estudos teóricos e experimentais de placas foram corroboradas a-
través de pesquisas que empregam a solução numérica e a aplicação de métodos de análise computacional 
de placas. Dentre os vários métodos discretos que foram utilizados para a avaliação dos fatores de con-
centração de tensão, o método de elementos finitos (FEM) é o mais utilizado para os problemas de placas 
com furo circular. 

O propósito deste trabalho é avaliar o caso da flexão longitudinal de placas com orifício circular centra-
lizado. Este possui uma série de características interessantes referentes ao fator de concentração de ten-
sões. Para tal análise, se fará uso do recurso computacional do Método dos Elementos de Contorno 
(MEC). 
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O Método dos Elementos de Contorno destaca-se dos demais métodos computacionais por ser uma téc-
nica de contorno e não de domínio como as demais. Essa técnica é possível, porque, na formulação do 
método, o modelo formulado por equações diferenciais parciais, que descrevem o problema físico num 
domínio espacial e temporal, é convertido em equações integrais envolvendo somente valores de contorno 
ou condições iniciais [18]. Desta forma, para aplicação computacional em problemas compostos por vari-
áveis espaciais, o processo de discretização só se faz necessário no contorno. Essa característica peculiar 
do MEC é uma de suas grandes vantagens, pois ao discretizar apenas o contorno, haverá uma menor en-
trada de dados e embora haja redução no volume dos dados, as operações matemáticas, geralmente, en-
volvem integrações singulares, fatores estes que, dependendo da extensão do problema, reduzem o esfor-
ço computacional. 

Para este caso específico, de peças com orifício circular, que podem ser considerados atuando estrutu-
ralmente como vigas ou placas, um destaque especial comumente é dado ao caso da flexão transversa, 
apresentada na Fig. 1(a), pois nessa condição encontram-se alguns dispositivos de larga aplicação prática, 
como os elementos de molas planas. 

Embora menos frequente na engenharia mecânica, mas comum na engenharia estrutural, se encontra o 
caso similar em que a flexão é longitudinal, ilustrado na Fig. 1(b). 

Esse último problema é rico em peculiaridades, que o torna ímpar em todo o conjunto de casos de Me-
cânica dos Materiais.  

Antes de prosseguir nas apresentações das peculiaridades do problema, é necessário melhor detalhar o 
conceito de fator de concentração de tensão, apresentando as principais definições a esse respeito. 

2. FATORES DE CONCENTRAÇÃO DE TENSÃO  

Os orifícios, ranhuras e entalhes são aqui denominados de incidentes geométricos, pois considera-se 
que suas dimensões são relativamente pequenas quando comparadas às principais dimensões da peça. De 
acordo com essa hipótese, graças ao Princípio de Saint-Venant, a distribuição de tensões em regiões afas-
tadas não são afetadas pelo orifício, obedecendo aos modelos mecânicos prescritos pela resistência dos 
materiais e ratificados pela teoria da elasticidade (quando tais modelos são disponíveis). No caso de pla-
cas, a solução é acessível e bem conhecida, sendo o perfil do tensões normais linear e tendo valor nulo na 
chamada linha neutra, que é definida pelo centroide da seção transversal da viga. As tensões nessas regi-
ões geometricamente não perturbadas são denominadas nominais e os picos de tensão, que ocorrem nas 
extremidades superiores da seção reta da viga, são as máximas tensões nominais. 

O fator de concentração de tensão Kt é definido como a relação da tensão máxima, Smax, com a tensão 
nominal, Snom, isto é, 

m ax
t

no m

S
K

S


                   (1) 

Especificamente para o caso de uma placa com orifício circular sob flexão longitudinal, Peterson [19] 
define tres tipos de fatores de concentração de tensão. 

O primeiro é Ktg, esse fator compara a maior tensão atuante na peça, junto ao orifício (posição A mos-
trada na Fig. 2), com o valor máximo nominal, relativamente distante do incidente geométrico (posição D 

           
(a)                                                                                      (b) 

Fig. 1. (a) Placa com orifício circular sob flexão transversa; (b) Placa com orifício circular sob flexão longitudinal. 
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mostrada na Fig. 2). Assim, convém destacar, Ktg é uma razão entre tensões que surgem em áreas resisten-
tes diferentes [19]. 

Nos casos de solicitação axial, onde as tensões normais se distribuem uniformemente, é fácil avaliar te-
oricamente que o efeito de um entalhe circular produz um pico de tensões nos pontos localizados na seção 
reta exatamente junto ao orifício. 

Todavia, para o caso de flexão em placas, existe uma distribuição não uniforme de esforço, que resulta 
nas tensões nominais máximas atuando junto à extremidade superior da seção resistente. Como o orifício 
se localiza junto às regiões próximas à linha neutra, a identificação do ponto de tensão máxima não é 
imediata. 

De qualquer modo, para efeito de definição, Smax é considerado como o valor de tensão real que ocorre 
na menor seção reta, junto ao orifício. A Fig. 3 mostra os valores de Ktg em função das dimensões uma 
placa com orifício circular sob flexão longitudinal. 

Como dito anteriormente, o fator de concentração de tensão é definido como a relação da tensão máxi-
ma, Smax, com a tensão nominal, Snom. Howland e Stevenson [20] mostram matematicamente que Ktg é 
representado por: 

m ax
26tg

S
K

M W t


                              (2) 

Onde M é o momento fletor, W a altura da placa e t é a espessura da placa. 

           
Fig. 2. Placa com orifício circular sob flexão longitudinal. 

 

Fig. 3. Fator de concentração de tensão (Ktg) em uma placa com orifício circular sob flexão longitudinal [19]. 
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Em função da redução da área, devido ao aumento do diâmetro do orifício, as tensões reais na seção crí-
tica crescem bastante. Logo, por envolver pontos pertencentes a seções diferentes, Ktg leva em conta não 
apenas o efeito da concentração de esforços, mas também a redução da seção reta AC. Nota-se pelo gráfi-
co de Ktg, que para valores de d/W menores do que 0,45, o entalhe em si não torna a placa mais fraca, mas 
em termos de projeto Ktg é no mínimo igual a unidade. Em termos práticos, tal fator é pouco utilizado, 
sendo o preterido pelos coeficientes mostrados a seguir, pois relacionam pontos numa mesma seção. 

O segundo fator de concentração de tensão denomina-se de Ktn, o quociente entre a maior tensão real 
junto ao entalhe (posição A mostrada na Fig. 2) e a tensão nominal correspondente ao raio do orifício d/2.  

A Fig. 4 mostra os valores de Ktn em função das dimensões uma placa com orifício circular sob flexão 
longitudinal. 

Matematicamente que Ktn é representado por: 

m ax
3 36 ( )tn
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K
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

                                        (3) 

Onde d é o diâmetro do orifício circular. 
Percebe-se um resultado surpreendente. O fator de concentração de tensões é sempre igual a 2, para 

qualquer relação entre altura da viga e o diâmetro do orifício. Concorrem para a ratificação deste resulta-
do trabalhos de pesquisadores como Howland e Stevenson [20] com ferramental matemático, Heywood 
[21], Ryan e Fischer [2] e Frocht e Leven [17] através de experimentos fotoelásticos. 

O terceiro fator de concentração de tensão, não menos importante, denominado K’tn, compara a tensão 
máxima no orifício com a tensão máxima nominal na extremidade superior da seção da placa (posição C 
mostrada na Fig. 2). 

O comportamento é ainda bastante curioso, pois K’tn versus a razão d/W é uma relação linear, que pode 
ser expressa por: 

, 2
tn

d
K

W


                       (4) 

Por esta última expressão, pode-se perceber que para diâmetros menores do que a metade da altura, o 
valor de K’tn é menor do que a unidade, o que significa que a tensão máxima passa ocorrer na posição C 
(Fig. 2) e não mais junto à superfície do orifício. 

Segundo Peterson [19], a Fig. 5 mostra os valores de K’tn em função das dimensões uma placa com 
orifício circular sob flexão longitudinal. 

Matematicamente que K’tn é representado por: 

          
Fig. 4. Fator de concentração de tensão (Ktn) em uma placa com orifício circular sob flexão longitudinal [19]. 
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Embora possa parecer que haja um alívio de concentração de tensão junto ao incidente geométrico, essa 
interpretação não é correta. Ocorre que a definição de K’tn considera no seu numerador a tensão máxima 
real no orifício, que se torna menor do que a tensão presente na extremidade superior da seção para diâ-
metros pequenos, ou seja, menores do que a metade da altura da placa. 

Na próxima seção será abordado recurso computacional utilizado neste trabalho, especificamente o Mé-
todo dos Elementos de Contorno (MEC). 

3. APLICAÇÃO DO MÉTODO DOS ELEMENTOS DE CONTORNO  

Apesar de sua relativa recentidade, o método dos elementos de contorno encontra-se plenamente conso-
lidado em diversos campos de aplicação, particularmente nos casos pertinentes à Mecânica dos sólidos. O 
êxito do método pode ser confirmado em abundante literatura especializada, conforme pode ser encontra-
da a partir da referência [18]. 

Para a aplicação do método é importante definir a formulação do MEC para elasticidade linear. 
A Equação de Navier, que é uma equação de equilíbrio em termo de deslocamentos, é representada em 

um sistema 2-D como: 




 embu
G

uG jkjkkkj ,0,
)21(

,
                                                (6) 

Onde bj representa o efeito de domínio (neste trabalho é considerado o caso onde a de carga de domínio é 
nula). 

O MEC basicamente transforma equações diferenciais parciais, que governam o domínio do problema, 
em equações integrais envolvendo valores de contorno, após a introdução de funções de ponderação de-
nominadas soluções fundamentais. Considera-se que existe continuidade de deslocamentos nos pontos de 
contorno  , desta forma a representação integral da componente uj de deslocamento é dada por: 

               xdxuxpxdxpxuuC ijjijjjij  


;; ** 
                            (7) 

      
Fig. 5. Fator de concentração de tensão (K’tn) em uma placa com orifício circular sob flexão longitudinal [19]. 
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Onde Γ representa o contorno do problema; *
iju e *

ijp na formulação tradicional correspondem à solu-

ção fundamental de Kelvin ( K
iju e K

ijp ); Cij é um coeficiente relacionado à geometria do corpo e   é o 

ponto fonte. 
As soluções fundamentais de Kelvin para problemas bidimensionais são apresentadas por Brebbia, Tel-

les e Wrobel [22] nas equações (8) e (9): 
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                      (9) 

Onde *
ijp e *

iju representam as forças de superfície e deslocamentos na direção j devido a uma força uni-

tária na direção i; r é a distância entre o ponto fonte e o ponto calculado; ν é o coeficiente de Poisson e G 
é o módulo de cisalhamento. 

Segundo Brebbia, Telles e Wrobel [22] é usual em equações integrais de contorno, na elasticidade, co-
meçar assumindo a denominada Identidade de Somigliana, dada na equação (10), que nada mais é do que 
a equação (7) para pontos fonte situados no interior: 

         


 dXuXpdXpuu ijjijji ;; ** 
                                             (10) 

Derivando esta última expressão em relação às coordenadas do ponto  : 

 
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                          (11) 

A equação (11) fornece as componentes das deformações específicas que, através da Lei de Hooke, 
permitem encontrar as tensões nos pontos internos. 

Então, pode-se escrever diretamente que a expressão das tensões para os pontos internos é: 

             * *; ;ij k ijk k ijkp X u X d X u X p X d X   
 

    
                            (12) 

Onde *
ijku  e *

ijkp  podem ser definidos para duas dimensões como: 
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e 

     

    
 

*
, , , , , ,2

, , , , , ,

{2 1 2 4
2 1

2 1 2

1 4 }

i jk k ij j ik i jk i j k

i j k j i k k i j j ik i jk

k ij

G r
p r r r r r r

r n

n r r n r r n r r n n

n

    
 

    

 

        

     

 
              (14) 

Neste trabalho a técnica utilizada apenas com uma ferramenta de trabalho eficiente para calcular e tra-
çar os perfis das tensões atuantes em diversas partes da placa sob flexão, especialmente junto ao orifício, 
comparando-os com os resultados obtidos por Peterson [19] e mostrando como se processa a curiosa re-
distribuição de esforços comentada anteriormente. Cabe ressaltar que a visualização do perfil de distribui-
ção de tensões na seção crítica da placa, para diversas relações d/W, é inviável de se realizar analiticamen-
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te ou experimentalmente, por diversas razões, entre as quais se inclui a complexidade e o custo dessa 
empreitada. 

Sintetizando, no procedimento numérico empregado, faz-se um modelo discretizado do problema, de-
nominado “malha de elementos”, cujo maior refinamento indica garantia de melhor representação do seu 
comportamento. Por questões ligadas principalmente a relação custo/benefício entre malhas muito refina-
das, que resultam em dispêndio computacional elevado, sem acarretar precisão significativa dos resulta-
dos, procura-se fazer malhas com número equilibrado de nós. Esses últimos são pontos representativos do 
corpo, nos quais são colhidos os valores das incógnitas desejadas como solução do problema. 

Conforme foi destacado, não é objetivo deste trabalho abordar a peculiaridade do método dos elementos 
de contorno, e sim utilizá-lo para cumprir os objetivos já expostos. 

4. SIMULAÇÃO NUMÉRICA 

Foi considerada uma placa fletida pela ação de dois conjugados M, iguais e de sentidos opostos, que a-
tuam em um de seus planos principais. Tomando como origem das coordenadas o centróide da seção 
transversal coincidente com o plano principal da flexão, segundo Fig. 6. 

A flexão é simulada através de um carregamento aplicado nas extremidades, formado por tensões nor-
mais que variam linearmente a partir da linha neutra. O problema é considerado em estado plano de ten-
sões, e deste modo a espessura da placa é aqui omitida. Os elementos de contorno utilizados são isopara-
métricos lineares. 

As malhas discretizadas neste problema foram de 224 pontos nodais e 39 pontos internos, conforme 
mostrado na Fig. 7. 

 

Fig. 6. Placa fletida pela ação de dois conjugados M, iguais e de sentidos opostos. 

 

Fig. 7. Placa discretizada em 224 pontos nodais (220 + 4 duplos) e 39 pontos internos. 
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Primeiramente é apresentada na Fig. 8 a comparação entre os resultados experimentais fotoelásticos pa-
ra os coeficientes Ktg, Ktn e K’tn, colhidos em Peterson [19], e os valores numéricos obtidos com o método 
dos elementos de contorno. 

Os resultados apresentam-se bastante bons. Embora a precisão dos mesmos se reduza para os maiores 
valores de d/W, ainda encontram-se dentro de uma precisão bastante satisfatória. 

Não obstante o interessante na comparação realizada, o objetivo deste trabalho é traçar a distribuição de 
tensões ao longo da menor seção resistente, perturbada pela presença do orifício. Uma vez constatado que 
estejam bem representados valores de tensão máxima, usadas para compor os coeficientes de concentra-
ção de tensão apresentados, pode-se confiar na precisão dos valores de tensão em pontos intermediários. 

Nas Fig. 9, 10 e 11 que se seguem são mostrados os perfis de tensão normal (S) ao longo da seção resis-
tente, de coordenada Y, para valores variáveis do diâmetro d do orifício. Os valores se situam entre a 
razão d/W mínima igual a 0,1 e máxima de 0,9. 

 

Fig. 8. Comparação entre os valores numéricos obtidos pelo MEC e os valores obtidos por Peterson, [19]. 

 

Fig. 9. Perfis de tensão normal, situados entre d/W igual a 0,1 a 0,4, ao longo da seção resistente. 
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Os perfis de tensão situados entre d/W igual a 0,1 a 0,4 (Fig. 9) mostram que para diâmetros menores do 
que a metade da altura, a tensão máxima ocorre junto a superfície externa da placa e não junto à superfí-
cie do orifício. Contudo, verifica-se que essa diferença diminui a medida que o diâmetro do orifício au-
menta. 

E essa diferença praticamente não existe quando o diâmetro do orifício se aproxima de um valor próxi-
mo da metade da altura da placa, como mostrado na Fig. 10 para uma razão d/W igual a 0,5, mas logo em 
seguida, para uma razão d/W igual a 0,6 (Fig. 10), a tensão máxima passa a ocorrer junto à superfície do 
orifício.  

A partir da razão d/W igual a 0,7 até 0,9 a tensão máxima que ocorre junto à superfície do orifício só 
aumenta juntamente com o do diâmetro do orifício. 

Além dos perfis de tensão normal (S) ao longo da seção resistente AC (Fig. 2), foram avaliadas as ten-
sões no segmento CE (Fig. 12). De acordo com Peterson [19] o ângulo  = 30o é independente da relação 
d/(d-W) no intervalo investigado. 

 

Fig. 10. Perfis de tensão normal, d/W igual a 0,5 e 0,6,  ao longo da seção resistente. 

 

Fig. 11. Perfis de tensão normal, situados entre d/W igual a 0,7 a 0,9,  ao longo da seção resistente. 
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Os resultados obtidos por meio do MEC para as tensões normais (S) na posição de  = 30o são mostra-
dos na Fig. 13. 

Para as razões d/W variando de 0,1 a te 0,7 a tensão máxima é sempre atingida para um ângulo  = 30o, 
de acordo com a teoria de Peterson [19], contudo para as razões 0,8 e 0,9 as tensões máximas tendem para 
a posição C, ocorrendo em ângulos de 27o e 23o respectivamente, a perda de precisão que pode ser justifi-
cada pelo aumento dos valores de d/W, mas ainda com resultados bastante satisfatórios. 

Conforme já exposto anteriormente, o fator de concentração de tensão K’tn versus a razão d/W é uma re-
lação linear, que pode ser expressa por 2d/W. Para este mesmo caso, onde a tensão Snom na posição C (Fig. 
12) foi determinada matematicamente, verifica-se que a Snom calculada é aproximadamente igual a Smax na 
posição B, determinada pelo MEC. De forma que pode-se dizer que o fator K’tn também pode ser deter-
minado pela relação seguinte: 

, m ax

m ax

A

tn B

S
K

S


                             (15) 

 

Fig. 12. Posiçoes relevantes na placa com orifício circular sob flexão longitudinal. 

 

Fig. 13. Tensões normais ao longo da superfície da placa, obtidas por meio do MEC. 
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A Fig. 14 apresenta estes resultados e compara com os resultados obtidos pelo MEC assim como os 
mostrados por Peterson [19]. Nota-se que os resultados, considerando a relação mostrada na equação (15), 
são muito bons. 

5. CONCLUSÕES 

A aplicação dos métodos numéricos discretos representa um grande avanço tecnológico. A reprodução 
de resultados desta natureza, envolvendo análise de concentração de tensões, quando feita pelas técnicas 
experimentais convencionais, é extremamente difícil e custosa. No entanto, com os modernos recursos 
computacionais, é uma tarefa relativamente simples, que se torna a cada dia mais acessível e confiável. 

A simulação computacional do problema permitiu observar mais alguns fatos interessantes, que vem 
assim se somar aos já discutidos anteriormente. Pode-se perceber que a intensidade da tensão, junto à 
extremidade superior da seção, permanece praticamente inalterada para quaisquer valores de d/W, não 
obstante a seção reta se reduzir e os momentos fletores aplicados serem constantes. 

Também percebe-se que para valores d/W grandes, particularmente o colhido para uma razão 0,9, a dis-
tribuição de tensões na seção reta AC aproxima-se de uma forma linear, onde a tensão máxima que ocorre 
junto à superfície do orifício aumenta juntamente com o do diâmetro do mesmo. 

A simulação computacional do problema também permitiu avaliar as tensões normais (S) que ocorrem 
ao longo da superfície da placa e verificar que especificamente na posição de B da placa ocorrem as má-
ximas tensões, e que essas tensões são aproximadamente iguais as tensões nominais na posição C. 

Essas novas observações vêm reforçar o caráter atípico do problema de flexão transversal em vigas com 
orifício circular, caso único em toda a casuística da mecânica dos sólidos. Isso significa uma demanda de 
atenção redobrada nos projetos em que o modelo físico concebido em projeto se aproxima do caso citado, 
para que haja o adequado aproveitamento da capacidade resistiva do componente sem qualquer compro-
metimento da segurança do mesmo. 
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Fig. 14. Comparação entre os valores K'tn obtidos pelo MEC, os obtidos por Peterson [19] e os obtidos por meio da relação 
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STRESS ANALYSIS OF PLATES WITH CIRCULAR HOLES IN PLANE 
BENDING 

Abstract – Holes, notches, fillets and grooves are geometrical incidents which have special function in machine 
elements, structures and others equipment. On the other hand, them produces stress peaks or stress concentra-
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tion. Engineers and mechanical designers must be cautious and to pay attention with this effect. Longitudinal 
bending of rectangular plate with central circular hole is a very interesting kind of stress concentration problem. 
It has many different features those need to be studied carefully. The most important is the curious result that 
the stress concentration factor is independent of the relative size of the hole, and forms the only know care of a 
notch showing such independence. This paper purposes to make a study about the stress distribution using the 
Boundary Element Method, an efficient and easy numerical technique to analyze solid mechanics and engineer-
ing problems in general. Results are discussed carefully and they are presented in graphical form, to make easy 
their understanding. 

Keywords – Stress concentration, Plate with central circular, Computational analysis of plates. 




