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Resumo — A introducdo de orificios, entalhes e rasgos em elementos de maquinas, equipamentos e pecas em ge-
ral, é procedimento comum, visando atender necessidades funcionais, particularmente o acoplamento entre par-
tes afins. Entretanto, a presenca desses incidentes geométricos ndo apenas diminui a area resistente dos compo-
nentes, como promove a ampliagdo do campo de tensdes no seu entorno, demandando atengdo especial do pro-
jetista quanto a sua resisténcia estrutural nesses casos. Um problema bastante interessante referente a concentra-
¢do de tensdes ¢ o caso da flexdo longitudinal de placas retangulares com orificio circular centralizado. Este
possui uma série de caracteristicas interessantes, sendo o propdsito deste trabalho explora-las através do recurso
computacional do Método dos Elementos de Contorno, uma técnica de solugao numérica simples e eficiente.

Palavras-chave — Concentragao de tensdo, placas com orificio, analise computacional de placas.

1. INTRODUCAO

Existe um grande numero de pesquisas que investigam o comportamento mecanico de placas com orifi-
cio, sendo uma das principais preocupacdes a avaliacdo dos fatores de concentragao de tensao [1-12].

Muitos dos problemas de concentragdo de tensdes foram analisados através dos métodos matematicos
da teoria da elasticidade [13,14], permitindo levantarem-se importantes relacdes entre as dimensdes da
peca e do entalhe, resultando em um correspondente fator para a elevacdo de tensdes.

Apesar dos esforcos de pesquisadores [15,16], os quais buscam solucdes exatas para tensoes, deforma-
¢oes ¢ deslocamentos de uma placa retangular com um orificio circular submetida a um momento de fle-
x40, usando a fungdo de tensdo de Airy. Ainda existe uma grande limitagdo no processo de obtengdo da
solucdo analitica nos casos em que a geometria do corpo é mais complexa. Praticamente a totalidade das
tabelas especificas de valores de concentragao de tensdes foram construidas a partir de fontes como Ryan
e Fischer [2] e Frocht e Leven [17] onde um esfor¢o consideravel de pesquisa foi despendido no desen-
volvimento e aplicagdo de métodos fotoelasticos, com relativo éxito.

As respostas encontradas através dos estudos teéricos e experimentais de placas foram corroboradas a-
través de pesquisas que empregam a solu¢do numérica ¢ a aplicagdo de métodos de analise computacional
de placas. Dentre os varios métodos discretos que foram utilizados para a avaliacdo dos fatores de con-
centracao de tensao, o método de elementos finitos (FEM) € o mais utilizado para os problemas de placas
com furo circular.

O proposito deste trabalho ¢ avaliar o caso da flex@o longitudinal de placas com orificio circular centra-
lizado. Este possui uma série de caracteristicas interessantes referentes ao fator de concentracdo de ten-
soes. Para tal andlise, se fard uso do recurso computacional do Método dos Elementos de Contorno
(MECQ).



32 L.O. Castro Lara et al./ Revista Iberoamericana de Ingenieria Mecdanica 21(2), 31-43 (2017)

@Q O

(@) (b)

Fig. 1. (a) Placa com orificio circular sob flexdo transversa; (b) Placa com orificio circular sob flexdo longitudinal.

O Método dos Elementos de Contorno destaca-se dos demais métodos computacionais por ser uma téc-
nica de contorno e¢ ndo de dominio como as demais. Essa técnica é possivel, porque, na formulacdo do
método, o modelo formulado por equagdes diferenciais parciais, que descrevem o problema fisico num
dominio espacial e temporal, ¢ convertido em equagdes integrais envolvendo somente valores de contorno
ou condig¢des iniciais [18]. Desta forma, para aplicagdo computacional em problemas compostos por vari-
aveis espaciais, o processo de discretizacao s6 se faz necessario no contorno. Essa caracteristica peculiar
do MEC ¢é uma de suas grandes vantagens, pois ao discretizar apenas o contorno, havera uma menor en-
trada de dados e embora haja reducao no volume dos dados, as operagdes matematicas, geralmente, en-
volvem integragoes singulares, fatores estes que, dependendo da extensdo do problema, reduzem o esfor-
¢o computacional.

Para este caso especifico, de pecas com orificio circular, que podem ser considerados atuando estrutu-
ralmente como vigas ou placas, um destaque especial comumente ¢ dado ao caso da flexdo transversa,
apresentada na Fig. 1(a), pois nessa condi¢do encontram-se alguns dispositivos de larga aplicacdo pratica,
como os elementos de molas planas.

Embora menos frequente na engenharia mecanica, mas comum na engenharia estrutural, se encontra o
caso similar em que a flexao ¢ longitudinal, ilustrado na Fig. 1(b).

Esse ultimo problema ¢ rico em peculiaridades, que o torna impar em todo o conjunto de casos de Me-
canica dos Materiais.

Antes de prosseguir nas apresentagdes das peculiaridades do problema, ¢ necessario melhor detalhar o
conceito de fator de concentrag@o de tensdo, apresentando as principais defini¢des a esse respeito.

2. FATORES DE CONCENTRACAO DE TENSAO

Os orificios, ranhuras e entalhes s3o aqui denominados de incidentes geométricos, pois considera-se
que suas dimensodes sdo relativamente pequenas quando comparadas as principais dimensdes da pega. De
acordo com essa hipotese, gragas ao Principio de Saint-Venant, a distribuicdo de tensdes em regides afas-
tadas ndo sdo afetadas pelo orificio, obedecendo aos modelos mecanicos prescritos pela resisténcia dos
materiais e ratificados pela teoria da elasticidade (quando tais modelos sdo disponiveis). No caso de pla-
cas, a solugdo ¢ acessivel e bem conhecida, sendo o perfil do tensdes normais linear e tendo valor nulo na
chamada linha neutra, que ¢ definida pelo centroide da secdo transversal da viga. As tensdes nessas regi-
Oes geometricamente ndo perturbadas sdo denominadas nominais e os picos de tensdo, que ocorrem nas
extremidades superiores da se¢ao reta da viga, sdo as maximas tensdes nominais.

O fator de concentragdo de tensao K; é definido como a relagdo da tensdo maxima, S,..,, com a tensao
nominal, S, isto é,

S
Kt Smax
nom (1)

Especificamente para o caso de uma placa com orificio circular sob flexao longitudinal, Peterson [19]
define tres tipos de fatores de concentragdo de tensao.

O primeiro ¢ K, esse fator compara a maior tensdo atuante na pega, junto ao orificio (posi¢do A mos-
trada na Fig. 2), com o valor maximo nominal, relativamente distante do incidente geométrico (posigcdo D
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Fig. 2. Placa com orificio circular sob flexao longitudinal.
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Fig. 3. Fator de concentragio de tensdo (K,,) em uma placa com orificio circular sob flexdo longitudinal [19].

mostrada na Fig. 2). Assim, convém destacar, K,, ¢ uma razao entre tensdes que surgem em 4areas resisten-
tes diferentes [19].

Nos casos de solicitagao axial, onde as tensdes normais se distribuem uniformemente, é facil avaliar te-
oricamente que o efeito de um entalhe circular produz um pico de tensdes nos pontos localizados na se¢ao
reta exatamente junto ao orificio.

Todavia, para o caso de flexdo em placas, existe uma distribui¢do ndo uniforme de esfor¢o, que resulta
nas tensdes nominais maximas atuando junto a extremidade superior da secdo resistente. Como o orificio
se localiza junto as regides proximas a linha neutra, a identificagdo do ponto de tensdo maxima ndo ¢é
imediata.

De qualquer modo, para efeito de defini¢do, S, é considerado como o valor de tensao real que ocorre
na menor secdo reta, junto ao orificio. A Fig. 3 mostra os valores de K, em funcdo das dimensdes uma
placa com orificio circular sob flexao longitudinal.

Como dito anteriormente, o fator de concentragdo de tensdo ¢ definido como a relagdo da tensdo maxi-
ma, S, com a tensdo nominal, S,,,. Howland e Stevenson [20] mostram matematicamente que K, é
representado por:

S

max

®6M /Wt @)

Onde M é o momento fletor, ¥ a altura da placa e ¢ € a espessura da placa.
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Fig. 4. Fator de concentragdo de tensdo (K,,) em uma placa com orificio circular sob flexao longitudinal [19].

Em fun¢do da redugdo da area, devido ao aumento do diametro do orificio, as tensdes reais na se¢ao cri-
tica crescem bastante. Logo, por envolver pontos pertencentes a se¢oes diferentes, K,, leva em conta nio
apenas o efeito da concentracao de esforgos, mas também a redugdo da secao reta AC. Nota-se pelo grafi-
co de Kj,, que para valores de d/W menores do que 0,45, o entalhe em si ndo torna a placa mais fraca, mas
em termos de projeto K, ¢ no minimo igual a unidade. Em termos praticos, tal fator ¢ pouco utilizado,
sendo o preterido pelos coeficientes mostrados a seguir, pois relacionam pontos numa mesma sec¢ao.

O segundo fator de concentragdo de tensdo denomina-se de K,,, 0 quociente entre a maior tensao real
junto ao entalhe (posigdo A mostrada na Fig. 2) e a tensdo nominal correspondente ao raio do orificio d/2.

A Fig. 4 mostra os valores de K, em fun¢do das dimensdes uma placa com orificio circular sob flexao
longitudinal.

Matematicamente que K,, € representado por:

S

max

K =
"eMd/(WP —d’)t 3)

Onde d ¢ o didmetro do orificio circular.

Percebe-se um resultado surpreendente. O fator de concentracdo de tensdes ¢ sempre igual a 2, para
qualquer relagdo entre altura da viga e o diametro do orificio. Concorrem para a ratificagao deste resulta-
do trabalhos de pesquisadores como Howland e Stevenson [20] com ferramental matematico, Heywood
[21], Ryan e Fischer [2] e Frocht e Leven [17] através de experimentos fotoelasticos.

O terceiro fator de concentragdo de tensdao, ndo menos importante, denominado K’,,, compara a tensio
maxima no orificio com a tensdo maxima nominal na extremidade superior da se¢@o da placa (posigdo C
mostrada na Fig. 2).

O comportamento ¢ ainda bastante curioso, pois K, versus a razdo d/W ¢ uma relagdo linear, que pode
Ser expressa por:

_2d
n W (4)

Por esta ultima expressao, pode-se perceber que para didmetros menores do que a metade da altura, o
valor de K’,, ¢ menor do que a unidade, o que significa que a tensdo maxima passa ocorrer na posi¢ao C
(Fig. 2) e ndo mais junto a superficie do orificio.

Segundo Peterson [19], a Fig. 5 mostra os valores de K’;, em fun¢@o das dimensdes uma placa com
orificio circular sob flexao longitudinal.

Matematicamente que K ', é representado por:

K i
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Fig. 5. Fator de concentragdo de tensdo (K ’,,) em uma placa com orificio circular sob flexdo longitudinal [19].

S

max

K =
"MW /(WP —dP )t )

Embora possa parecer que haja um alivio de concentrag@o de tensdo junto ao incidente geométrico, essa
interpretagdo nao ¢ correta. Ocorre que a defini¢do de K, considera no seu numerador a tensdo maxima
real no orificio, que se torna menor do que a tensdo presente na extremidade superior da se¢do para dia-
metros pequenos, ou seja, menores do que a metade da altura da placa.

Na proxima secao sera abordado recurso computacional utilizado neste trabalho, especificamente o Mé-
todo dos Elementos de Contorno (MEC).

3. APLICACAO DO METODO DOS ELEMENTOS DE CONTORNO

Apesar de sua relativa recentidade, o método dos elementos de contorno encontra-se plenamente conso-
lidado em diversos campos de aplicagdo, particularmente nos casos pertinentes a Mecanica dos solidos. O
éxito do método pode ser confirmado em abundante literatura especializada, conforme pode ser encontra-
da a partir da referéncia [18].

Para a aplica¢do do método ¢ importante definir a formulagdo do MEC para elasticidade linear.

A Equagdo de Navier, que ¢ uma equacao de equilibrio em termo de deslocamentos, ¢ representada em
um sistema 2-D como:

Guj,kk+iuk,kj+bj=0, em

1-2v) (6)
Onde b; representa o efeito de dominio (neste trabalho ¢ considerado o caso onde a de carga de dominio €
nula).

O MEC basicamente transforma equacdes diferenciais parciais, que governam o dominio do problema,
em equacdes integrais envolvendo valores de contorno, apés a introdugdo de fung¢des de ponderacao de-
nominadas solucdes fundamentais. Considera-se que existe continuidade de deslocamentos nos pontos de
contorno & , desta forma a representagdo integral da componente u; de deslocamento ¢ dada por:

Cy(& )+ [u, (¥)py (&5 (x) = [ p, (s (¢3x)dT(x)

r r (7)
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* * ~ .. \
Onde I' representa o contorno do problema; u,, ¢ p, na formulagdo tradicional correspondem a solu-

~ . K K . . . : \ . B’
¢do fundamental de Kelvin (u,; ¢ p;; ); C; € um coeficiente relacionado a geometria do corpo e ¢ éo

ponto fonte.
As solugdes fundamentais de Kelvin para problemas bidimensionais sdo apresentadas por Brebbia, Tel-
les e Wrobel [22] nas equagdes (8) e (9):

u = SﬂG(l ){(3 4v)1n( ja +rr} (®)

Py = m[%((l —2v)5, + 2”,1”,1')_ (1-2v )(VJVJ L )} )

* * . . ~ . . .
Onde p, e u, representam as forgas de superficie e deslocamentos na dire¢do j devido a uma forga uni-

taria na diregdo i; » ¢ a distancia entre o ponto fonte e o ponto calculado; v é o coeficiente de Poisson e G
¢ o modulo de cisalhamento.

Segundo Brebbia, Telles e Wrobel [22] € usual em equagdes integrais de contorno, na elasticidade, co-
megar assumindo a denominada Identidade de Somigliana, dada na equagao (10), que nada mais ¢ do que
a equacgdo (7) para pontos fonte situados no interior:

u,(&)+ [u,($)py (& XM = [ p, (X )y (&5 X )T
' : (10)
Derivando esta ultima expressdo em relagdo as coordenadas do ponto ¢ :

dui((;) - Ip,/ (X)M;k (§3X)dF(X)_J‘”./ (X)p;/,k (é’;X)dF(X)
G ‘ (1

A equagdo (11) fornece as componentes das deformagdes especificas que, através da Lei de Hooke,
permitem encontrar as tensdes nos pontos internos.
Entdo, pode-se escrever diretamente que a expressdo das tensdes para os pontos internos €:

ka zjk ;X)dr( ) I”/((X)p;k(g;X)dr(X)

i (12)
Onde ul/ . € p;.k podem ser definidos para duas dimensdes como:
Uy, = ;{(1—21/)(;/’ Oy +1.0, —r,ké‘i.)+2rir’ "/:k}
4z(1-v)r ! ! / o (13)
e
Py = m@c;fv)ﬁ 2 2—;[(1 ~ 2w )8, v (r S, 4 )4 r, ]
+2v (nr v n e )+ (L=2v)(Bnrr, +n,0, +nd,
-(1-4v)n,6,} (14)

Neste trabalho a técnica utilizada apenas com uma ferramenta de trabalho eficiente para calcular e tra-
car os perfis das tensdes atuantes em diversas partes da placa sob flex@o, especialmente junto ao orificio,
comparando-os com os resultados obtidos por Peterson [19] e mostrando como se processa a curiosa re-
distribui¢do de esforcos comentada anteriormente. Cabe ressaltar que a visualizagao do perfil de distribui-
¢do de tensdes na se¢do critica da placa, para diversas relagdes d/W, é inviavel de se realizar analiticamen-
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te ou experimentalmente, por diversas razdes, entre as quais se inclui a complexidade e o custo dessa
empreitada.

Sintetizando, no procedimento numérico empregado, faz-se um modelo discretizado do problema, de-
nominado “malha de elementos”, cujo maior refinamento indica garantia de melhor representagao do seu
comportamento. Por questdes ligadas principalmente a relacdo custo/beneficio entre malhas muito refina-
das, que resultam em dispéndio computacional elevado, sem acarretar precisdo significativa dos resulta-
dos, procura-se fazer malhas com nimero equilibrado de nds. Esses ultimos sdo pontos representativos do
corpo, nos quais sdo colhidos os valores das incognitas desejadas como solugdo do problema.

Conforme foi destacado, ndo ¢ objetivo deste trabalho abordar a peculiaridade do método dos elementos
de contorno, e sim utiliza-lo para cumprir os objetivos ja expostos.

4. SIMULACAO NUMERICA

Foi considerada uma placa fletida pela a¢ao de dois conjugados M, iguais ¢ de sentidos opostos, que a-
tuam em um de seus planos principais. Tomando como origem das coordenadas o centréide da secdo
transversal coincidente com o plano principal da flexao, segundo Fig. 6.

A flexao ¢ simulada através de um carregamento aplicado nas extremidades, formado por tensdes nor-
mais que variam linearmente a partir da linha neutra. O problema ¢ considerado em estado plano de ten-
soes, e deste modo a espessura da placa ¢ aqui omitida. Os elementos de contorno utilizados sdo isopara-
métricos lineares.

As malhas discretizadas neste problema foram de 224 pontos nodais e 39 pontos internos, conforme
mostrado na Fig. 7.

> <]

z F

Fig. 6. Placa fletida pela acdo de dois conjugados M, iguais e de sentidos opostos.

Fig. 7. Placa discretizada em 224 pontos nodais (220 + 4 duplos) e 39 pontos internos.



38 L.O. Castro Lara et al./ Revista Iberoamericana de Ingenieria Mecanica 21(2), 31-43 (2017)

——Ktg(Peterson) ~o—Ktg(MEC) /
6

-#-K'tn(Peterson) =#=K'tn(MEC) //
5

—+=Ktn(Peterson) =<Ktn(MEC)

Kt

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
d/w

Fig. 8. Comparagao entre os valores numéricos obtidos pelo MEC e os valores obtidos por Peterson, [19].

12 r d/W=0,1 L2r d/W=0,2
1 A 1 ?
08 M 08 M
% 0,6 MM % 0,6 MM
0,4 0,4
0,2 M 0,2

0 1 1 1 1 1 1 1 1 J 0 1 1 ]
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5
Y/Raio Y/Raio
12 ¢ d/w=0,3 L2 r d/w=04

1 M 1 M
0,8 0,8

& 0,6 AW'QL &O,G W
(7)) (7))

0,4 0,4
0,2 0,2
0 : : ' 0 '
1 1,5 2 2,5 3 3,5 1 1,5 2 2,5 3
Y/Raio Y/Raio

Fig. 9. Perfis de tensdo normal, situados entre d/ igual a 0,1 a 0,4, ao longo da segdo resistente.

Primeiramente ¢ apresentada na Fig. 8 a comparacao entre os resultados experimentais fotoelasticos pa-
ra os coeficientes Ky, K, € K, colhidos em Peterson [19], e os valores numéricos obtidos com o método
dos elementos de contorno.

Os resultados apresentam-se bastante bons. Embora a precisdo dos mesmos se reduza para os maiores
valores de d/IWV, ainda encontram-se dentro de uma precisdo bastante satisfatoria.

Nao obstante o interessante na comparacao realizada, o objetivo deste trabalho € tragar a distribuicao de
tensdes ao longo da menor se¢do resistente, perturbada pela presenga do orificio. Uma vez constatado que
estejam bem representados valores de tensdo maxima, usadas para compor os coeficientes de concentra-
¢do de tensdo apresentados, pode-se confiar na precisdo dos valores de tensdo em pontos intermediarios.

Nas Fig. 9, 10 ¢ 11 que se seguem sdo mostrados os perfis de tensdo normal (S) ao longo da se¢ao resis-
tente, de coordenada Y, para valores variaveis do didmetro d do orificio. Os valores se situam entre a
razao d/W minima igual a 0,1 ¢ maxima de 0,9.
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Fig. 10. Perfis de tensdo normal, d/W igual a 0,5 ¢ 0,6, ao longo da se¢@o resistente.
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Fig. 11. Perfis de tensdo normal, situados entre d/ igual a 0,7 a 0,9, ao longo da segdo resistente.

Os perfis de tensdo situados entre d/W igual a 0,1 a 0,4 (Fig. 9) mostram que para didametros menores do
que a metade da altura, a tensao maxima ocorre junto a superficie externa da placa e ndo junto a superfi-
cie do orificio. Contudo, verifica-se que essa diferenga diminui a medida que o didmetro do orificio au-
menta.

E essa diferenca praticamente nao existe quando o diametro do orificio se aproxima de um valor proxi-
mo da metade da altura da placa, como mostrado na Fig. 10 para uma razao d/W igual a 0,5, mas logo em
seguida, para uma razao d/W igual a 0,6 (Fig. 10), a tens3o maxima passa a ocorrer junto a superficie do
orificio.

A partir da razdo d/W igual a 0,7 até 0,9 a tens3o maxima que ocorre junto a superficie do orificio s
aumenta juntamente com o do didmetro do orificio.

Além dos perfis de tensdo normal (S) ao longo da secdo resistente AC (Fig. 2), foram avaliadas as ten-
sdes no segmento CE (Fig. 12). De acordo com Peterson [19] o dngulo = 30° é independente da relagdo
d/(d-W) no intervalo investigado.
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Fig. 12. Posicoes relevantes na placa com orificio circular sob flexao longitudinal.
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Fig. 13. Tensdes normais ao longo da superficie da placa, obtidas por meio do MEC.

Os resultados obtidos por meio do MEC para as tensdes normais (S) na posi¢do de a = 30° sdo mostra-
dos na Fig. 13.

Para as razdes d/W variando de 0,1 a te 0,7 a tensdo maxima é sempre atingida para um angulo = 30°,
de acordo com a teoria de Peterson [19], contudo para as razdes 0,8 ¢ 0,9 as tensdes maximas tendem para
a posicdo C, ocorrendo em angulos de 27° ¢ 23° respectivamente, a perda de precisdo que pode ser justifi-
cada pelo aumento dos valores de d/I, mas ainda com resultados bastante satisfatorios.

Conforme ja exposto anteriormente, o fator de concentracéo de tensdo K, versus a razdo d/W ¢ uma re-
lagdo linear, que pode ser expressa por 2d/W. Para este mesmo caso, onde a tensao S,,,, na posi¢ao C (Fig.
12) foi determinada matematicamente, verifica-se que a S,,, calculada ¢ aproximadamente igual a S,,,, na
posi¢@o B, determinada pelo MEC. De forma que pode-se dizer que o fator K, também pode ser deter-
minado pela relagdo seguinte:

e (15)
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Fig. 14. Comparagao entre os valores K'y, obtidos pelo MEC, os obtidos por Peterson [19] e os obtidos por meio da relagao
SAmaX/ SBmax-

A Fig. 14 apresenta estes resultados e compara com os resultados obtidos pelo MEC assim como os
mostrados por Peterson [19]. Nota-se que os resultados, considerando a relagdo mostrada na equagao (15),
sdo muito bons.

5. CONCLUSOES

A aplica¢do dos métodos numéricos discretos representa um grande avango tecnologico. A reproducao
de resultados desta natureza, envolvendo analise de concentra¢do de tensdes, quando feita pelas técnicas
experimentais convencionais, ¢ extremamente dificil e custosa. No entanto, com os modernos recursos
computacionais, ¢ uma tarefa relativamente simples, que se torna a cada dia mais acessivel e confiavel.

A simulagdo computacional do problema permitiu observar mais alguns fatos interessantes, que vem
assim se somar aos ja discutidos anteriormente. Pode-se perceber que a intensidade da tensdo, junto a
extremidade superior da se¢do, permanece praticamente inalterada para quaisquer valores de d/W, nao
obstante a se¢do reta se reduzir e os momentos fletores aplicados serem constantes.

Também percebe-se que para valores d/W grandes, particularmente o colhido para uma razao 0,9, a dis-
tribuicdo de tensdes na segdo reta AC aproxima-se de uma forma linear, onde a tensdo maxima que ocorre
junto a superficie do orificio aumenta juntamente com o do diametro do mesmo.

A simula¢do computacional do problema também permitiu avaliar as tensdes normais (S) que ocorrem
ao longo da superficie da placa e verificar que especificamente na posi¢do de B da placa ocorrem as ma-
ximas tensoes, € que essas tensdes sao aproximadamente iguais as tensdes nominais na posicao C.

Essas novas observagdes vém reforgar o carater atipico do problema de flexdo transversal em vigas com
orificio circular, caso tnico em toda a casuistica da mecanica dos so6lidos. Isso significa uma demanda de
aten¢do redobrada nos projetos em que o modelo fisico concebido em projeto se aproxima do caso citado,
para que haja o adequado aproveitamento da capacidade resistiva do componente sem qualquer compro-
metimento da seguranga do mesmo.
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STRESS ANALYSIS OF PLATES WITH CIRCULAR HOLES IN PLANE
BENDING

Abstract — Holes, notches, fillets and grooves are geometrical incidents which have special function in machine
elements, structures and others equipment. On the other hand, them produces stress peaks or stress concentra-
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tion. Engineers and mechanical designers must be cautious and to pay attention with this effect. Longitudinal
bending of rectangular plate with central circular hole is a very interesting kind of stress concentration problem.
It has many different features those need to be studied carefully. The most important is the curious result that
the stress concentration factor is independent of the relative size of the hole, and forms the only know care of a
notch showing such independence. This paper purposes to make a study about the stress distribution using the
Boundary Element Method, an efficient and easy numerical technique to analyze solid mechanics and engineer-
ing problems in general. Results are discussed carefully and they are presented in graphical form, to make easy
their understanding.

Keywords — Stress concentration, Plate with central circular, Computational analysis of plates.
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