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Resumo – No presente trabalho, a transferência de calor por convecção forçada foi calculada para o escoamento 
laminar fluidodinamicamente desenvolvido e termicamente em desenvolvimento de fluidos Newtonianos com 
perfil de temperatura de entrada uniforme no interior de dutos de setores circulares submetidos a condições de 
contorno de temperatura de parede constante (condição de Dirichlet). Para facilitar o tratamento analítico e a 
aplicação de condições de contorno em problemas com essa geometria, uma Transformação Conforme foi em-
pregada visando efetuar uma mudança de coordenadas apropriada e, então, a equação da energia resultante foi 
resolvida através do emprego da Técnica da Transformada Integral Generalizada – TTIG sobre ela. O perfil da 
temperatura média de mistura, o desenvolvimento dos números de Nusselt local e médio e o comprimento de 
entrada térmica foram, então, determinados para diferentes configurações geométricas dos dutos. Estes resulta-
dos foram comparados, quando possível, com aqueles disponíveis na literatura e apresentaram uma boa concor-
dância. 

Palavras-chave – Convecção forçada, transformada integral, transformação conforme, geometria de setor circu-
lar. 

1. INTRODUÇÃO 

Uma importante linha de pesquisa científico-tecnológica é a obtenção de técnicas e procedimentos que 
possibilitem a interpretação mais realista possível dos fenômenos naturais, proporcionando assim, resul-
tados precisos e confiáveis. Em particular, a solução de problemas difusivos e difusivo-convectivos sem-
pre representou um grande desafio à Engenharia Mecânica, uma vez que, as equações diferenciais funda-
mentais que regem os princípios de conservação, são, em via de regra, de difícil solução [1]. Recentemen-
te, pesquisadores estão concentrando seus esforços no desenvolvimento de técnicas híbridas analítico-
numéricas que garantam precisão e confiabilidade nos resultados por elas obtidos [2-3]. Em particular, a 
Técnica da Transformada Integral Generalizada – TTIG [4], é uma ferramenta com estas características e 
vem demonstrando ser eficaz na solução de problemas de Mecânica dos Fluidos e Transferência de Calor 
e Massa, os quais, geralmente, não possuem solução pelas técnicas analíticas clássicas. A TTIG permite 
um tratamento analítico elegante e formal proporcionando um menor esforço numérico-computacional 
para a obtenção de solução de problemas [5]. 

Neste contexto, foi proposta para o presente trabalho, a composição de duas ferramentas matemáticas 
na obtenção de solução de uma classe de problemas difusivo-convectivos de natureza parabólica em ge-
ometria não-convencional [6]. Mais precisamente, foi analisado o problema térmico envolvido no escoa-
mento laminar fluidodinamicamente desenvolvido e termicamente em desenvolvimento de fluidos New-
tonianos com perfil de temperatura de entrada uniforme no interior de dutos com geometria de setor cir-
cular e submetidos a condições de contorno de temperatura de parede constante (condição de Dirichlet). 
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Para facilitar a aplicação das condições de contorno, inicialmente proceder-se-á uma mudança de variá-
veis através de um sistema de coordenadas que seja resultado de uma Transformação Conforme [7]. Este 
procedimento simplifica o tratamento dos operadores Laplacianos no novo sistema de coordenadas. Feito 
isso, para a obtenção do campo de temperatura no escoamento, a TTIG foi empregada sobre a equação da 
energia. Os parâmetros térmicos de interesse, tais como: temperatura média de mistura, números de Nus-
selt local e médio, comprimento de entrada térmica foram, então, calculados para as diversas configura-
ções da geometria analisada e, comparados, quando possível, com os disponíveis na literatura. 

2. PROCEDIMENTO HÍBRIDO ANALÍTICO-NUMÉRICO 

Para a formulação matemática do problema foi considerado um escoamento laminar fluidodinamica-
mente desenvolvido e termicamente em desenvolvimento no interior de dutos de setores circulares, com 
perfil de temperatura de entrada uniforme e temperatura de parede constante (condição de contorno de 
Dirichlet). As propriedades dos fluidos permanecem constantes em todo o domínio e os efeitos da dissi-
pação viscosa e da condução axial foram desprezados. Desta forma, para fluidos Newtonianos, a equação 
da energia para o sistema de coordenadas (Fig. 1a), é escrita como: 

     2
p

T x,y,z
ρc w x,y k T x,y,z

z




  ,       0x, y , z  ,                               (1) 

sendo que, ρ representa a massa específica do fluido, cp é o calor específico a pressão constante, k é a 
condutividade térmica, w é a velocidade e T é a temperatura. 

As condições de entrada e de contorno são dadas por: 

  0T x,y,z T ,       0x, y , z  ,                                                (2) 

  pT x,y,z T ,       0,,  zyx  ,                                                    (3) 

sendo que, T0 e Tp são as temperaturas de entrada e de parede, respectivamente, Γ é o contorno e Ω é o 
domínio da geometria de setor circular. 

O perfil de velocidade w(x,y) do escoamento no interior do duto de setor circular é obtido por meio da 
Técnica da Transformada Integral Generalizada, conforme apresentado em Antonini Alves et al. [8]. 

 
 
 

Fig. 1.a. Geometria proposta para o problema.    Fig. 1.b. Transformação do domínio no plano (x,y) para 
o plano (u,v). 
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2.1. Adimensionalização 

Reescrevendo a equação da energia e as condições de contorno, Eqs. (1)-(3), na forma adimensional, 
tem-se, respectivamente, que: 

       2 2

2 2

X ,Y ,Z X ,Y ,Z X ,Y ,Z
W X ,Y

Z X Y

     
  

 
,                                 (4) 

  1X ,Y ,Z  ,       0X ,Y , Z   ,                                       (5) 

  0X ,Y ,Z  ,        , , 0X Y Z   ,                                         (6) 

com: 

hD

x
X  ,     

hD

y
Y  ,     

h

z
Z

Pe D
,     

4 S
h

A
D

Per
 ,                                       (7) 

   
méd

w X ,Y
W X ,Y

w
 ,   p méd hc w D

Pe
k


 ,                                            (8) 

    P

o P

T X ,Y ,Z T
X ,Y ,Z

T T






,                                                     (9) 

sendo que, Dh representa o diâmetro hidráulico, Pe o Número de Pèclet, AS a área da seção transversal, 
Per o perímetro do contorno analisado e wméd a velocidade média do fluido. 

2.2. Transformação de Coordenadas 

A geometria de setor circular é proveniente da seguinte Transformação Conforme: 

i
er  e   ,                             (10) 

sendo que,   é a variável complexa no plano z:  = X + iY e   é o conjugado da variável complexa no 
plano transformado  : viu  . Esta relação permite transformar o domínio do setor circular no plano 

(x,y), Fig. 1(a), em um domínio retangular no plano (u,v) conforme ilustrado na Fig. 1(b). 
 

As relações de transformação de coordenadas, os coeficientes métricos hu e hv e o Jacobiano J (u,v) são 
dadas por: 

 v
eX r e cos u ,      v

eY r e sen u ,     Z = z.                                     (11) 

   
2 2

v
u v e

X Y
h u,v h u,v r e

u u
               ,                                   (12) 

   
 

2 2v
e

X ,Y
J u,v r e

u,v


 


.                                             (13) 

Este novo sistema de coordenadas é ortogonal. Como pode ser observado, o arco externo do setor circu-
lar é dado pela reta v = 0 no novo sistema de coordenadas e o arco interno pela reta v = v0, com v0 = 
ln(re/ri) = ln(r*). Além disso, obtém-se a geometria de setor circular fazendo v0  ∞. 

Com estas novas variáveis definidas, a equação da energia e as condições de entrada e de contorno, 
Eqs. (4)-(6), transformam-se em: 
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       2 2

2 2

u,v,Z u,v,Z u,v,Z
H u,v

Z u v

    
  

  ,       vu, ,                         (14) 

  1u,v,Z  ,       0u,v , Z   ,                                       (15) 

  0u,v,Z  ,      0 0 0ou , v v , Z    ,                                    (16) 

  0u,v,Z  ,      00 0 0u u , v , Z    ,                                    (17) 

  0u,v,Z  ,      0 00 0u u , v v , Z    ,                                    (18) 

  0u,v,Z  ,      0 00 0u u , v v , Z    ,                                   (19) 

sendo que,      H u,v J u,v W u,v . 

2.3. Aplicação da Técnica da Transformada Integral Generalizada – TTIG 

Para a solução da equação da energia no novo sistema de coordenadas, aplica-se a TTIG para proceder 
à remoção das derivadas parciais de segunda ordem. Para esta finalidade, o potencial θ(u,v,Z) é escrito em 
termos de uma expansão em autofunções normalizadas obtidas de problemas auxiliares de autovalor para 
cada coordenada espacial. Sendo assim, é realizada a aplicação da Transformada Integral por partes. Nes-
te sentido, inicialmente, é considerado o seguinte problema auxiliar de autovalor: 

   
2

2
2

0
d u

u
d u


   ,      00 u u  ,                                                 (20) 

 0 0  ,      0 0u  .                                                   (21) 

Os autovalores e as autofunções associados a este problema são dados, respectivamente, por: 

0
i

i

u

  ,        i iu sen u  ,     i = 1,2,3 ...                                                (22) 

Essas autofunções são ortogonais, o que permite o desenvolvimento do seguinte par transformada-
inversa: 

     
0

0

i i

u

v,Z K u u,v,Z du   ,     transformada,                                        (23) 

     
1

i i
i

u ,v,Z K u v,Z 




  ,     inversa,                                             (24) 

sendo que Ki(u) são as autofunções normalizadas dadas por: 

   
1 2

i
i /

i

u
K u

N




,     
 

0

2 0

0 2

u

i i

u
N u du 

.                                            (25) 

Efetuando-se o produto interno das autofunções normalizadas Ki(u) com a equação da energia e utili-
zando-se das condições de contorno e das equações que definem o problema auxiliar de autovalor, obtém-
se a primeira transformação da equação diferencial: 

       2
2

2
1

j i
ij i i

j

v,Z v,Z
A v v,Z

Z v

  
 

 





  ,     j = 1,2,3 ...                         (26) 
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       
0

o

ij i j

u

A v K u K u H u,v d u 
.                                             (27) 

Para proceder a transformação integral relativo a coordenada v, considera-se o seguinte problema de au-
tovalor: 

   
2

2
2

0
d v

v
dv


   ,      00 v v  ,                                        (28) 

 0 0  ,      0 0v  .                                        (29) 

Os autovalores e as autofunções para este problema são: 

0
m

m

v

  ,        m mv sen v  ,     m = 1,2,3...                                      (30) 

As autofunções acima definidas têm a propriedade de ortogonalidade que permitem o desenvolvimento 
do seguinte par transformada-inversa: 

       
0 0

0 0

v u

im i mZ K u Z v u,v,Z du dv    ,     transformada,                           (31) 

       
1 1

i m im
i m

u,v,Z K u Z v Z
 

 

     ,     inversa,                                 (32) 

sendo que, Zm(v) são as autofunções normalizadas: 

   
1 2

m
m /

m

v
Z v

M




,     
 

0

2 0

0 2

v

m m

v
M v dv 

.                                       (33) 

Efetua-se a remoção da derivada parcial relativa a variável v através do produto interno das autofunções 
normalizadas Zm(v) com a equação diferencial transformada em u e fazendo uso das condições de contor-
no e das relações de ortogonalidade relativas ao segundo problema de autovalor. Obtém-se assim, a 
Transformação Integral da equação da energia, dada pela seguinte equação: 

     2 2

1 1

0jn
ijmn i m im

n m

d Z
B Z

dZ


  

 

 

  


 ,     n = 1,2,3...                            (34) 

     
0

0

v

ijmn m n ijB Z v Z v A v dv           
0 0

0 0

v u

j i m nK u K u Z v Z v H u,v du dv  
                 (35) 

sendo que os parâmetros Bijmn são integráveis e, portanto, conhecidos. 
A solução do sistema infinito e acoplado de equações diferenciais ordinárias dado permite a obtenção 

do potencial transformado, quando submetido à condição de entrada transformada dada por: 

       
0 0

0 0

0 0im i m

v u

K u Z v u,v, du dv   

.                                          (36) 

O potencial transformado  im Z  pode ser obtido numericamente resolvendo o sistema de equações di-

ferenciais correspondente e truncando-se a expansão para uma dada ordem M e N, de acordo com a preci-
são estabelecida: 
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     2 2

1 1

0
N M

jn
ijmn i m im

n m

d Z
B Z

dZ


  

 

  



.                                           (37) 

O potencial temperatura pode, então, ser reconstruído fazendo uso da transformada inversa, para a ex-
pansão truncada até a ordem M e N, 

       
1 1

N M

i m im
i m

u,v,Z K u Z v Z
 

   

,                                              (38) 

e, finalmente, realiza-se a determinação dos parâmetros térmicos de interesse. Obviamente, quanto maior 
N e M maior será a precisão dos resultados. 

2.4. Parâmetros Térmicos de Interesse 

2.4.1. Temperatura Média de Mistura 

A temperatura adimensional média de mistura é dada por: 

     1
med

S

Z X ,Y ,Z W X ,Y d
A 

   
.                                          (39) 

Dessa forma, no plano (u,v), med é dada por: 

       
0 0

1 o o

med
S

u v

Z u,v,Z W u,v J u,v dv du
A

   
.                                  (40) 

2.4.2. Número de Nusselt Local 

O número de Nusselt local é definido da seguinte forma: 

   
 1

4
méd

méd

d Z
Nu Z

Z dZ


 


.                                            (41) 

2.4.3. Número de Nusselt Médio 

O número de Nusselt médio pode ser obtido por integração analítica dada por: 

     
0

1 1

4

Z

méd médNu Z Nu Z dZ ln Z
Z Z

   
.                                 (42) 

2.4.4. Comprimento de Entrada Térmico 

De acordo com Shah & London [9], o comprimento de entrada térmica é definido como sendo a posi-
ção em que o número de Nusselt local é 5% maior que o número de Nusselt na região em que o fluido está 
desenvolvido termicamente (número de Nusselt limite). Desta forma, 
 

    raiz positiva de 1 05 0thL , Nu Nu Z   
.                             (43) 

3. RESULTADOS E DISCUSSÃO 

Para a obtenção de resultados numéricos, o Método da Quadratura de Gauss foi utilizado para efetuar o 
cálculo das integrais envolvidas nos coeficientes Bijmn e nos demais parâmetros físicos de interesse. Desta 
forma, foi necessária, também, a determinação das autofunções e do Jacobiano da transformações nos 
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pontos de quadraturas. Feito isso, o sistema de equações diferenciais foi resolvido numericamente para a 
determinação dos coeficientes do potencial transformado por meio da utilização da rotina DIVPAG da 
Biblioteca IMSL [10]. 

Para a determinação dos coeficientes do potencial transformado, a expansão da série que representa a 
equação da energia, Eq. (38), foi truncada para diversas ordens M e N. Por meio de uma análise de con-
vergência, foi verificado que r* = 10-3 é um excelente valor para a obtenção da geometria de setor circu-
lar. Além disso, em decorrência desta análise foi constatado que a convergência da temperatura adimensi-
onal média de mistura é mais lenta principalmente na região próxima a entrada do duto e/ou para 5° ≤  ≤ 
90°, sendo necessário considerar truncamentos da série com ordem superior a M = N = 35, para alcançar 
pelo menos quatro dígitos de precisão. Para a região em que  > 90° foi observado que a série que deter-
mina o potencial temperatura converge mais rapidamente, sendo necessário a consideração de 30 termos 
na expansão da série em cada direção. Ressalta-se que o tempo máximo de processamento necessário para 
o cálculo dos parâmetros térmico de interesse é de aproximadamente 30 segundos em um microcomputa-
dor pessoal comum (processador de 3,6 GHz com 16 GB de memória RAM). 

Nas Figuras 2, 3 e 4 são apresentados os resultados numéricos dos comportamentos da temperatura 
adimensional média de mistura e dos números de Nusselt local e médio, respectivamente, para diversos 
dutos de geometria de setor circular em função do ângulo . Além disso, é apresentado na Fig. 5 e na 
tabela. 1, o comportamento do número de Nusselt limite e do comprimento de entrada térmica. 

Z = z / (Dh Re Pr)

 m
éd

(Z
)
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0.00

0.20

0.40

0.60

0.80

1.00

15°
45°
90°
180°
270°
350°



 

Fig. 2. Temperatura adimensional média de mistura para diversas configurações dos dutos de setores circulares. 
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Fig. 3. Número de Nusselt local para diversas configurações dos dutos de setores circulares. 
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Z = z / (Dh Re Pr)
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Fig. 4. Número de Nusselt médio para diversas configurações dos dutos de setores circulares. 
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Fig. 5. Número de Nusselt limite e do comprimento de entrada térmica para o escoamento em dutos de setores circulares. 

Tabela 1. Parâmetros térmicos relevantes para o escoamento em dutos de setores circulares. 

 Nu∞ 
Numéd 

(Z=10-3) 
Numéd 

(Z=10-2) 
Numéd 

(Z=10-1) 
Numéd 

(Z=100) 
Lth 

    
5° 1,451 12,07 5,25 2,49 1,61 0,3122 

10° 1,703 13,64 5,97 2,86 1,88 0,1799 
15° 1,916 12,26 5,39 2,73 2,02 0,1390 
30° 2,365 12,29 5,72 3,03 2,43 0,0743 
45° 2,646 12,46 6,01 3,24 2,70 0,0588 
90° 3,078 12,63 6,55 3,63 3,13 0,0469 

120° 3,200 12,94 6,76 3,77 3,26 0,0476 
150° 3,270 13,21 6,89 3,86 3,33 0,0495 
180° 3,313 13,47 6,97 3,92 3,37 0,0520 
210° 3,343 13,62 7,05 3,97 3,41 0,0547 
240° 3,367 13,77 7,10 4,01 3,43 0,0573 
270° 3,390 13,89 7,14 4,05 3,46 0,0598 
300° 3,414 14,01 7,20 4,08 3,48 0,0620 
330° 3,439 14,11 7,24 4,12 3,51 0,0641 
350° 3,457 14,17 7,26 4,14 3,53 0,0654 
360° 3,466 14,19 7,28 4,16 3,54 0,0660 
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Para o problema difusivo-convectivo analisado no escoamento laminar interno em dutos de setores circu-
lares, vários trabalhos foram encontrados na literatura [11-14] possibilitando assim, a comparação dos 
resultados na tabela 2. Desta análise, foi verificado uma boa concordância entre resultados apresentados e 
os disponíveis na literatura, principalmente com os obtidos numericamente pelo Método de Diferenças 
Finitas apresentados em Trupp & Lau [11]. 

4. CONCLUSÕES 

No presente trabalho foi proposta a composição de duas ferramentas matemáticas, a Transformação 
Conforme e a Técnica da Transformada Integral Generalizada, na solução de uma classe de problemas 
difusivo-convectivos de natureza parabólica em domínios de geometrias não-convencionais. Para tal, 
foram analisados os parâmetros térmicos do escoamento laminar fluidodinamicamente desenvolvido e 
termicamente em desenvolvimento de fluidos Newtonianos no interior de dutos de setores circulares sub-
metidos às condições de contorno de Dirichlet (temperatura prescrita na parede) e perfil de temperatura 
de entrada uniforme. Diante da necessidade da implantação de um sistema de coordenadas que facilitasse 
o tratamento analítico e a aplicação das condições de contorno do problema em questão, foi empregada 
uma Transformação Conforme capaz de gerar o domínio analisado. Este procedimento simplificou signi-
ficativamente o tratamento dos operadores Laplacianos no novo sistema de coordenada. A Técnica da 
Transformada Integral Generalizada – TTIG foi empregada na equação da energia visando a remoção das 
derivadas espaciais de segunda ordem, transformando assim, a equação que representa o fenômeno em 
um problema de estrutura mais simples, que pode ser resolvido analítica ou numericamente. Para o pro-
blema estudado, a aplicação da TTIG gerou sistemas equações diferenciais ordinárias – EDO acoplados 
para o potencial transformado que foram resolvidos numericamente com a utilização da rotina DIVPAG 
da biblioteca IMSL Fortran. Parâmetros físicos de interesse foram, então, determinados para diversas 
configurações geométricas dos dutos de setores circulares. Destaca-se, que o tempo máximo de proces-
samento gasto no cômputo dos parâmetros interesse é pequeno, cerca de 30 segundos em um computador 
pessoal comum (processador de 3,6 GHz com 16 GB de memória RAM). Diante do exposto pode ser 
concluído que o emprego da TTIG e da Transformação Conforme foram eficientes para a obtenção de 
solução formal de uma classe problemas difusivo-convectivos de natureza parabólica em domínios de 
geometrias não-convencionais que, a priori, não possuem solução pelas técnicas analíticas clássicas.  

Tabela 2. Comparação dos resultados obtidos com os disponíveis na literatura para o número de Nusselt limite no escoamento 
em dutos de setores circulares. 

 
Presente 
Trabalho 

Trupp 
& 

Lau 
[11] 

Ben-Ali 
et al. 
[12] 

Etemad 
& 

Bakhtiari 
[13] 

Lin et al. 
[14] 

5° 1,451 - 1,423 - - 
10° 1,703 1,686 1,692 - - 
15° 1,916 1,898 1,901 - - 
30° 2,365 2,342 2,341 2,266 2,383 
45° 2,646 2,625 - - - 
90° 3,079 - 3,060 3,052 - 

120° 3,200 3,188 3,191 - - 
150° 3,270 - 3,268 - - 
180° 3,313 3,316 3,316 3,239 - 
210° 3,343 - 3,347 - - 
240° 3,367 - 3,370 - - 
270° 3,390 - 3,389 - - 
300° 3,414 - 3,407 - - 
330° 3,439 - 3,427 - - 
350° 3,457 - 3,443 - - 
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HYBRID ANALYTICAL-NUMERICAL SOLUTION FOR THERMAL PROBLEMS 
INSIDE CIRCULAR SECTOR DUCTS  

Abstract – In this work, the forced convection heat transfer was calculated for hydrodynamically fully developed 
and thermally non-developed Newtonian laminar flow with uniform temperature entrance profile inside circular 
sector ducts under boundary condition of constant surface temperature (Dirichlet condition). In order to facilitate 
the analytical treatment and the application of the boundary conditions, a Conformal Transform was employed to 
change the domain into a more suitable coordinate system. Thereafter, Generalized Integral Transform Technique 
– GITT was applied on the energy equation to obtain the temperature field. Numerical results were obtained for 
bulk mean temperature, local and average Nusselt number, and thermal entry length considering several geometric 
configurations. These results were compared, as much as possible, to those available in the literature and they 
presented a good agreement. 

Keywords – Forced Convection, Integral Transform, Conformal Transform, Geometry of Circular Sector. 
 




