Un modelo basado en el Clasificador Naïve Bayes para la evaluación del desempeño docente

Guadalupe Gutiérrez Esparza, Lourdes Margain Fuentes, Juana Canul Reich, Tania Aglaé Ramírez del Real

Resumen


La evaluación del desempeño docente es un proceso de medición importante en las instituciones de educación superior en México y en el mundo, ya que retroalimenta el desempeño de los docentes con el fin de mejorar las clases y estrategias para beneficio de la educación de los estudiantes. En este trabajo se describe el desarrollo y evaluación de un Modelo Computacional denominado SocialMining, basado en el algoritmo Naïve Bayes, para apoyar el análisis de las opiniones de los estudiantes en el proceso de la evaluación del desempeño docente, llevada a cabo mediante dispositivos móviles. Esta propuesta considera el uso de dispositivos móviles para la recopilación de datos aprovechando su aceptación por parte de los estudiantes en el proceso de educación y aprendizaje. Asimismo, se describe el desarrollo de corpus de subjetividad, el cual consta de un conjunto de términos afectivos relevantes de la evaluación docente para apoyar al algoritmo Naïve Bayes en la clasificación de las opiniones de los estudiantes dentro de las clases: positivo, negativo y neutral. Para medir el desempeño del proceso de la clasificación del Modelo Computacional SocialMining, se utilizan métricas como la matriz de confusión, precisión y la curva de ROC. Se presenta además un caso de estudio, en el cual se recolectan nuevas opiniones de estudiantes de la Universidad Politécnica de Aguascalientes (México) con el fin de probar el desempeño del modelo propuesto en la clasificación. Los resultados obtenidos consideran factible el Modelo Computacional SocialMining para implementarse en instituciones de educación superior. 


Palabras clave


Minería de opiniones, clasificador bayesiano, conjunto de datos, subjetividad, análisis ROC, dispositivo móvil, evaluación docente, planeación de la educación, caso de estudio.

Texto completo:

PDF

Referencias


Altrabsheh, N., Cocea, M., & Fallahkhair, S. (2014). Learning Sentiment from Students’ Feedback for Real-Time Interventions in Classrooms. Adaptive and Intelligent Systems. Volume 8779 of the series Lecture Notes in Computer Science, 40-49. doi: http://dx.doi.org/10.1007/978-3-319-11298-5_5.

Arrabal-Sánchez, G., & De-Aguilera-Monyano, M. (2016). Comunicar en 140 caracteres. Cómo usan Twitter los comunicadores en España. Revista Científica de Educomunicación. Comunicar, no. 46, v. XXIV. (9-17), Recuperado de http://goo.gl/YOqybX

Bayes, T. a. P., M. (1763). An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs. Philosophical Transactions (1683-1775), 370-418.

Bravo, E., Pedraza, A., & Herrera, L. (2013). Educación 2.0: Twitter como herramienta de aprendizaje de la Ingeniería. Latin American and Caribbean Consortium of Engineering Institution.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11(1-2), 87-110.

Cantillo, V., & Roura, R., & Sánchez, P. (2012). Tendencias Actuales en el uso de dispositivos móviles en educación. La Educación Digital Magazine, no147

Córdova, K. E. G., & González, J. R. V. (2015). Evaluación del desempeño: acercando la investigación educativa a los docentes. REVALUE, 2015, 3(2). Recuperado de http://revalue.mx/revista/index.php/revalue/issue/current.

Crovi, D., & Lemus, M.C. (2014). Jóvenes estudiantes y cultura digital: una investigación en proceso. Virtualis, 9, 36-55. Recuperado de http://goo.gl/8emHtj

Elizalde Lora, Leticia, & Reyes Chávez, Rafael. (2008). Key Elements for the Evaluation of the Teaching Performance. Revista electrónica de investigación educativa, 10(spe), 1-13.

Gewerc, A., Montero, L. & Lama, M. (2014). Colaboración y redes sociales en la enseñanza universitaria [Collaboration and Social Networking in Higher Education]. Comunicar, 21(42), 55-63. https://doi.org/10.3916/C42-2014-05

González-Lizárraga, M., Becerra-Traver, M. & Yanez-Díaz, M. (2016). Ciberactivismo: nueva forma de participación para estudiantes universitarios. Comunicar, 24(46), 47-54, doi: http://dx.doi.org/10.3916/C46-2016-05

Guerrero, C., Jaume, A., Juiz, C. y Lera, I. (2016). Use of Mobile Devices in the Classroom to Increase Motivation and Participation of Engineering University Students. IEEE Latin America Transactions, 14(1), 411-416.

Gupte, A., Joshi, S., Gadgul, P., & Kadam, A. (2014). Comparative Study of Classification Algorithms used in Sentiment Analysis. International Journal of Computer Science and Information Technologies; 5(5), 6261-6264, Recuperado de http://goo.gl/tiIHBT

Gutiérrez, G., Padilla, A., Canul-Recih, J., De-Luna, P., & Ponce, J. (2016). Proposal of a Sentiment Analysis Model in Tweets for improvement of the teaching - learning process in the classroom using a corpus of subjectivity. International Journal of Combinatorial Optimization Problems and Informatics, 7(2), 22-34.

Jurka, T. (2012). Sentiment: Tools for Sentiment Analysis. R package version 0.1, Recuperado de http://goo.gl/oxASCV

Kaur, G., & Singla, A. (2016). Sentimental Analysis of Flipkart reviews using Naïve Bayes and Decision Tree algorithm. International Journal of Advanced Research in Computer Engineering & Technology. 5(1), 148-153.

Liu, B. (2010). Sentiment Analysis and Subjectivity. In N. Indurkhia & F. J. Damerau (Eds.). Handbook of natural language processing, 627-666. Chapman and Hall: CRC Press.

Loureiro, Silvia, Míguez, Marina, & Otegui, Ximena. (2016). Desempeño docente en la enseñanza universitaria: análisis de las opiniones estudiantiles. Cuadernos de Investigación Educativa, 7(1), 55-67. Recuperado de https://goo.gl/hm1eAq

Martínez González, Adrián, Sánchez Mendiola, Melchor, & Martínez Stack, Jorge. (2010). Los cuestionarios de opinión del estudiante sobre el desempeño docente: Una estrategia institucional para la evaluación de la enseñanza en Medicina. Revista electrónica de investigación educativa, 12(1), 1-18.

Mejova, Y. (2009). Sentiment Analysis: An Overview. Comprehensive Exam Paper. Recuperado de https://goo.gl/xsFTV9

Moreno, R. D., Cepeda, I. M. L. y Romero, S. P. (2004). El modelo de evaluación, intervención y análisis de procesos como propuesta de diseño instruccional. Enseñanza e Investigación en Psicología. 9(2), 271-291.

Novak, J., & Cowling, M. (2011). The implementation of social networking as a tool for improving student participation in the classroom. Hobart : ISANA International Education Association Inc. Recuperado de http://goo.gl/IW6Igc.

Ortigosa, A., Martín, J. & Carro, R. (2014). Sentiment analysis in Facebook and its application to e-learning. Computers in Human Behavior, 31, 527-541, doi: http://dx.doi.org/10.1016/j.chb.2013.05.024.

Prasad, S. (2010). Micro-blogging Sentiment Analysis Using Bayesian Classification Methods. CS224N Project Report, Stanford. Recuperado de http://goo.gl/W2koQT

R-Core-Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de http://goo.gl/e40yiU.

Riloff, E., & Wiebe, J. (2003). Learning extraction patterns for subjective expressions. Conference on Empirical Methods in Natural Language Processing, 105-112. Recuperado de https://goo.gl/se0aIg.

Ruiz Carrascosa J. (2005). La evaluación de la docencia en los planes de mejora de la Universidad, Educación XXI, 8, 87-102.

Salton, G., & McGill, M. J. (1986). Introduction to modern information retrieval.

Spackman, K. A. (1989). Signal detection theory: Valuable tools for evaluating inductive learning. Proceedings of the Sixth International Workshop on Machine Learning. San Mateo, CA: Morgan Kaufman, 160–163.

Tan, S., Cheng, X., Wang, Y., and Xu, H. (2009). Adapting naive bayes to domain adaptation for sentiment analysis. In Advances in Information Retrieval, 337-349.

Tirado Segura, Felipe, Miranda Díaz, Alejandro, & Sánchez Moguel, Andrés. (2007). La evaluación como proceso de legitimidad: la opinión de los alumnos. Reporte de una experiencia. Perfiles educativos, 29(118), 7-24.

Valencia, A., González G. y Castañeda M. (2016). Structural Equation Model for Studying the Mobile-Learning Acceptance. IEEE Latin America Transactions, 14(4), 1988-1992.

Zaldivar, A., Tripp, A., Aguilar, J., Tovar, J. y Anguiano C. (2015). Using Mobile Technologies to Support Learning in Computer Science Students. IEEE Latin America Transactions, 13(1), 377-382.




DOI: https://doi.org/10.5944/ried.20.2.17717

Enlaces refback

  • No hay ningún enlace refback.




RIED. Revista Iboeroamericana de Educación a Distancia
(La Revista Iberoamericana de la Educación Digital)

 
Director/Editor : Lorenzo García Aretio
UNED, Facultad de Educación
C/ Juan del Rosal, 14
28040 Madrid (Spain).
ried@edu.uned.es 
ISSN :1138-2783
E-ISSN : 1390-3306
Depósito Legal : M- 36.279 -1997
Edita: Asociación Iberoamericana de Educación Superior a Distancia (AIESAD
)    

Reconocimiento NoComercial (by-nc): Se permite la generación de obras derivadas siempre que no se haga un uso comercial. Tampoco se puede utilizar la obra original con finalidades comerciales.
SÍGUENOS EN:

https://2.bp.blogspot.com/-wtzwURZeg6I/V_y8vM5DmdI/AAAAAAABKKQ/y_fW6U2dW3cOLG6z-tUwJ9u1Pwt9ltXHACLcB/s320/blogger_b_logo.jpg   https://4.bp.blogspot.com/-Q3lAzaCezXA/V_TZ0BTuIkI/AAAAAAABKF4/wP8QRQVCPiQnk0sE7nEDnZHY5F03AOjbgCLcB/s200/twitrer_120%2B%25281%2529.jpg  https://4.bp.blogspot.com/-4So1RLxqN7Q/VHMWABdXX9I/AAAAAAAAb4E/mV00Ac5Gm-Q/s1600/fb_icon_325x325.png    https://1.bp.blogspot.com/-S7ecZmnt3os/Vzmf77J7EfI/AAAAAAABEYc/g3MJ_0z_noUtAiLS7MRRHXgzOkGbZbfUACLcB/s200/scholar_logo_lg_2011.gif 
 

Colaboran con RIED:

https://2.bp.blogspot.com/-VKcDNIR3Sqk/V_aPanb6P0I/AAAAAAABKIA/XSdUeendX2wJ_afKOCIIkxkZjW0ZnT0vACLcB/s320/logoCUED.jpg       https://3.bp.blogspot.com/-wxw5W-VCRGA/WAnp69yeyuI/AAAAAAABKgo/LHi490KturcyZQE7KnlK2ZT9taWEUXkgQCLcB/s320/logo-AM2.01.png