Smartphones in the teaching of Physics Laws: Projectile motion| El teléfono inteligente en la enseñanza de las Leyes de la Física: movimiento de proyectiles.|

Pablo Martín-Ramos, Manuela Ramos Silva, Pedro Sidonio Pereira da Silva

Resumen


New technologies are called upon to play an important role as beneficial tools for meaningful learning in the classroom. In particular, smartphones can be regarded as pocket computers that, in addition to a remarkable memory and computing capacity, incorporate sensors such as accelerometers, gyroscopes, magnetometers, light sensors, etc., which turn them into easily available measurement instruments for practical classes in an educational environment. In this study, the suitability of these devices for demonstrating Classical Mechanics, minimizing the use of resources and class time, has been assessed in two real classrooms (with 16 to 19 year-old students) by conducting experiments related to projectile motion (vertical free fall and parabolic motion). A simple methodology that only involves a mobile phone, a free burst camera application and open-source tools (GIMP and OpenOffice Calc) for data processing is presented. The results obtained in non-perfected conditions led to an estimate of the acceleration of gravity with an error lower than 2%. Further analyses and alternative procedures are also suggested in the discussion section. No major difficulties were encountered with the high school students or with the first year university ones, and a high degree of satisfaction was found. 

---------------------------------------------------------------------------------

Las nuevas tecnologías están llamadas a jugar un papel importante como herramientas beneficiosas para el aprendizaje significativo en el aula. En particular, los teléfonos inteligentes son verdaderos ordenadores de bolsillo que, además de una notable capacidad de memoria y de cómputo, incorporan sensores como acelerómetros, giroscopios, magnetómetros, sensores de luz, etc. que los convierten en instrumentos de medida fácilmente disponibles para prácticas en un entorno educativo. En el presente estudio, la idoneidad de estos dispositivos para explicar conceptos de Mecánica Clásica, minimizando el uso de recursos y tiempo de clase, ha sido evaluada en dos clases reales (con estudiantes de edades comprendidas entre los 16 y los 19 años) mediante la ejecución de experimentos relacionados con el movimiento de proyectiles (caída libre y trayectoria parabólica). Se presenta una metodología sencilla, que únicamente hace uso de un teléfono móvil, una aplicación fotográfica gratuita para captura de imágenes en ráfaga y herramientas de código abierto (GIMP y OpenOffice Calc) para el procesado de los datos. Los resultados obtenidos en condiciones no optimizadas han conducido a una estimación de la aceleración de la gravedad con un error inferior al 2%. En la discusión de resultados se sugieren análisis más avanzados y otros procedimientos alternativos. No se encontraron problemas significativos en la ejecución de los experimentos ni con los alumnos de enseñanza secundaria ni con los de primer año de carrera, y el grado de satisfacción entre el alumnado fue alto. 


Palabras clave


nuevas tecnologías; práctica pedagógica; uso didáctico del ordenador.|didactic use of computer; new technologies; physics; teaching practice.

Texto completo:

PDF (English)

Referencias


Baird, W., Secrest, J., Padgett, C., Johnson, W., & Hagrelius, C. (2016). Smartphones and Time Zones. The Physics Teacher, 54(6), 351-353. doi:10.1119/1.4961177

Becker, H. J. (2000). Access to classroom computers. Communications of the ACM, 43(6), 24-24.

Clements, D. H., & Sarama, J. (2003). Strip mining for gold: Research and policy in educational technology—A response to “Fool’s Gold”. Educational Technology Review, 11(1), 7-69.

CMS collaboration. (2014). Evidence for the direct decay of the 125 GeV Higgs boson to fermions. Nature Physics, 10(8), 557-560.

Chevrier, J., Madani, L., Ledenmat, S., & Bsiesy, A. (2013). Teaching classical mechanics using smartphones. The Physics Teacher, 51(6), 376-377. doi:10.1119/1.4818381

Forinash, K., & Wisman, R. F. (2012). Smartphones as portable oscilloscopes for physics labs. The Physics Teacher, 50(4), 242. doi:10.1119/1.3694081

Forinash, K., & Wisman, R. F. (2015). Photogate Timing with a Smartphone. The Physics Teacher, 53(4), 234-235. doi:10.1119/1.4914566

Glaubke, C. (2007). The effects of interactive media on preschoolers’ learning: A review of the research and recommendations for the future. Oakland, CA: Children Now. www. childrennow. org/uploads/documents/prek_interactive_learning_2007. pdf.

Hall, J. (2013). More smartphone acceleration. The Physics Teacher, 51(1), 6. doi:10.1119/1.4772022

Hermans, R., Tondeur, J., van Braak, J., & Valcke, M. (2008). The impact of primary school teachers’ educational beliefs on the classroom use of computers. Computers & Education, 51(4), 1499-1509.

Ifenthaler, D., & Schweinbenz, V. (2013, April 27-May 1, 2013). Students’ acceptance of tablet-PCs in the classroom. Paper presented at the AERA 2013: Education and poverty: theory, research, policy, and praxis: Proceedings of the American Education Research Association 2013 annual meeting, San Francisco, CA, USA.

Kuhn, J., & Vogt, P. (2013). Analyzing acoustic phenomena with a smartphone microphone. The Physics Teacher, 51(2), 118. doi:10.1119/1.4775539

Lowther, D. L., Inan, F. A., Strahl, J. D., & Ross, S. M. (2012). Do one-to-one initiatives bridge the way to 21st century knowledge and skills? Journal of Educational Computing Research, 46(1), 1-30.

MacIsaac, D. (2015). Smartphones in a guitar redux. The Physics Teacher, 53(3), 190-190. doi:10.1119/1.4908097

Mau, S., Insulla, F., Pickens, E. E., Ding, Z., & Dudley, S. C. (2016). Locating a smartphone's accelerometer. The Physics Teacher, 54(4), 246-247. doi:10.1119/1.4944372

Monteiro, M., Stari, C., Cabeza, C., & Marti, A. C. (2015). The Atwood machine revisited using smartphones. The Physics Teacher, 53(6), 373-374. doi:10.1119/1.4928357

Monteiro, M., Vogt, P., Stari, C., Cabeza, C., & Marti, A. C. (2016). Exploring the atmosphere using smartphones. The Physics Teacher, 54(5), 308-309. doi:10.1119/1.4947163

Müller, A., Vogt, P., Kuhn, J., & Müller, M. (2015). Cracking knuckles — A smartphone inquiry on bioacoustics. The Physics Teacher, 53(5), 307-308. doi:10.1119/1.4917442

Shakur, A., & Kraft, J. (2016). Measurement of Coriolis Acceleration with a Smartphone. The Physics Teacher, 54(5), 288-290. doi:10.1119/1.4947157

Spritefish. (2016). Fast Burst Camera Lite v.6.2.0. Google Play. Retrieved from https://play.google.com/store/apps/details?id=com.spritefish.fastburstcameralite

Stošić, L. (2015). The importance of educational technology in teaching. International Journal of Cognitive Research in Science, Engineering and Education (IJCRSEE), 3(1), 111-114.

Stosic, L., & Stosic, I. (2013). Diffusion of innovation in modern school. International Journal Of Cognitive Research In Science, Engineering And Education (IJCRSEE), 1(1), 5-13.

Thomas, K. M., O’Bannon, B. W., & Britt, V. G. (2014). Standing in the schoolhouse door: Teacher perceptions of mobile phones in the classroom. Journal of Research on Technology in education, 46(4), 373-395.

Tornaría, F., Monteiro, M., & Marti, A. C. (2014). Understanding coffee spills using a smartphone. The Physics Teacher, 52(8), 502-503. doi:10.1119/1.4897595

Vogt, P., & Kuhn, J. (2012). Analyzing simple pendulum phenomena with a smartphone acceleration sensor. The Physics Teacher, 50(7), 439. doi:10.1119/1.4752056

Vogt, P., Kuhn, J., & Neuschwander, D. (2014). Determining ball velocities with smartphones. The Physics Teacher, 52(6), 376-377. doi:10.1119/1.4893100

Wang, L., Ertmer, P. A., & Newby, T. J. (2004). Increasing preservice teachers’ self-efficacy beliefs for technology integration. Journal of Research on Technology in Education, 36(3), 231-250.




DOI: http://dx.doi.org/10.5944/ried.20.2.17663

Enlaces refback

  • No hay ningún enlace refback.




RIED. Revista Iboeroamericana de Educación a Distancia
(La Revista Iberoamericana de la Educación Digital)

 
Director/Editor : Lorenzo García Aretio
UNED, Facultad de Educación
C/ Juan del Rosal, 14
28040 Madrid (Spain).
ried@edu.uned.es 
ISSN :1138-2783
E-ISSN : 1390-3306
Depósito Legal : M- 36.279 -1997
Edita: Asociación Iberoamericana de Educación Superior a Distancia (AIESAD
)    

Reconocimiento NoComercial (by-nc): Se permite la generación de obras derivadas siempre que no se haga un uso comercial. Tampoco se puede utilizar la obra original con finalidades comerciales.
SÍGUENOS EN:

https://2.bp.blogspot.com/-wtzwURZeg6I/V_y8vM5DmdI/AAAAAAABKKQ/y_fW6U2dW3cOLG6z-tUwJ9u1Pwt9ltXHACLcB/s320/blogger_b_logo.jpg   https://4.bp.blogspot.com/-Q3lAzaCezXA/V_TZ0BTuIkI/AAAAAAABKF4/wP8QRQVCPiQnk0sE7nEDnZHY5F03AOjbgCLcB/s200/twitrer_120%2B%25281%2529.jpg  https://4.bp.blogspot.com/-4So1RLxqN7Q/VHMWABdXX9I/AAAAAAAAb4E/mV00Ac5Gm-Q/s1600/fb_icon_325x325.png    https://1.bp.blogspot.com/-S7ecZmnt3os/Vzmf77J7EfI/AAAAAAABEYc/g3MJ_0z_noUtAiLS7MRRHXgzOkGbZbfUACLcB/s200/scholar_logo_lg_2011.gif 
 

Colaboran con RIED:

https://2.bp.blogspot.com/-VKcDNIR3Sqk/V_aPanb6P0I/AAAAAAABKIA/XSdUeendX2wJ_afKOCIIkxkZjW0ZnT0vACLcB/s320/logoCUED.jpg       https://3.bp.blogspot.com/-wxw5W-VCRGA/WAnp69yeyuI/AAAAAAABKgo/LHi490KturcyZQE7KnlK2ZT9taWEUXkgQCLcB/s320/logo-AM2.01.png